# Definition:Elementary Symmetric Function

## Definition

Let $a, b \in \Z$ be integers such that $b \ge a$.

Let $U$ be a set of $n = b - a + 1$ numbers $\set {x_a, x_{a + 1}, \ldots, x_b}$.

Let $m \in \Z_{>0}$ be a (strictly) positive integer.

An elementary symmetric function of degree $m$ is a polynomial which can be defined by the formula:

 $\displaystyle \map {e_m} U$ $=$ $\displaystyle \sum_{a \mathop \le j_1 \mathop < j_2 \mathop < \mathop \cdots \mathop < j_m \mathop \le b} \paren {\prod_{i \mathop = 1}^m x_{j_i} }$ $\displaystyle$ $=$ $\displaystyle \sum_{a \mathop \le j_1 \mathop < j_2 \mathop < \mathop \cdots \mathop < j_m \mathop \le b} x_{j_1} x_{j_2} \cdots x_{j_m}$

That is, it is the sum of all products of $m$ distinct elements of $\set {x_a, x_{a + 1}, \dotsc, x_b}$.

## Examples

### Example: $m = 0$

$e_0 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right) = 1$

### Example: $m = 1$

 $\displaystyle e_1 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)$ $=$ $\displaystyle x_1 + x_2 + \cdots + x_n$

### Example: $m = 2$

 $\displaystyle e_2 \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)$ $=$ $\displaystyle x_1 x_2 + x_1 x_3 + \cdots + x_1 x_n$ $\displaystyle$  $\, \displaystyle + \,$ $\displaystyle x_2 x_3 + \cdots + x_2 x_n$ $\displaystyle$  $\, \displaystyle + \,$ $\displaystyle \cdots$ $\displaystyle$  $\, \displaystyle + \,$ $\displaystyle x_{n - 1} x_n$

### Example: $m = n$

 $\displaystyle e_n \left({\left\{ {x_1, x_2, \ldots, x_n}\right\} }\right)$ $=$ $\displaystyle x_1 x_2 \cdots x_n$

### Example: $m > n$

Let $m > n$.

Then:

 $\displaystyle \map {e_m} {\set {x_1, x_2, \ldots, x_n} }$ $=$ $\displaystyle 0$

### Example: Monic polynomial coefficients

Let $\set {x_1, x_2, \ldots, x_n}$ be a set of real or complex values, not required to be unique.

The expansion of the monic polynomial in variable $x$ with roots $\set {x_1, x_2, \ldots, x_n}$ has coefficients which are sign factors times an elementary symmetric function:

$\ds \prod_{j \mathop = 1}^n \paren {x - x_j} = x^n - \map {e_1} {\set {x_1, \ldots, x_n} } x^{n - 1} + \map {e_2} {\set {x_1, \ldots, x_n} } x^{n - 2} + \dotsb + \paren {-1}^n \map {e_n} {\set {x_1, \ldots, x_n} }$

### Example: Recursion

Let $\set {z_1, z_2, \ldots, z_{n + 1} }$ be a set of $n + 1$ values, duplicate values permitted.

Then for $1 \le m \le n$:

$\map {e_m} {\set {z_1, \ldots, z_n, z_{n + 1} } } = z_{n + 1} \map {e_{m - 1} } {\set {z_1, \ldots, z_n} } + \map {e_m} {\set {z_1, \ldots, z_n} }$

## Also known as

An elementary symmetric function is also known as an elementary symmetric polynomial.

## Also see

• Results about elementary symmetric functions can be found here.