Elementary Symmetric Function/Examples/Monic Polynomial

From ProofWiki
Jump to navigation Jump to search



Example of Elementary Symmetric Function: Monic Polynomial

Let $\set {x_1, x_2, \ldots, x_n}$ be a set of real or complex values, not required to be unique.

The expansion of the monic polynomial in variable $x$ with roots $\set {x_1, x_2, \ldots, x_n}$ has coefficients which are parity operators times an elementary symmetric function:

$\ds \prod_{j \mathop = 1}^n \paren {x - x_j} = x^n - \map {e_1} {\set {x_1, \ldots, x_n} } x^{n - 1} + \map {e_2} {\set {x_1, \ldots, x_n} } x^{n - 2} - \dotsb + \paren {-1}^n \map {e_n} {\set {x_1, \ldots, x_n} }$


Proof

This is an exposition of Viète's Formulas.

$\blacksquare$


Also see