Definition:Embedding (Differential Geometry)
Jump to navigation
Jump to search
![]() | This page has been identified as a candidate for refactoring of basic complexity. Until this has been finished, please leave {{Refactor}} in the code.
New contributors: Refactoring is a task which is expected to be undertaken by experienced editors only. Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Refactor}} from the code. |
![]() | This article needs to be linked to other articles. In particular: review existing links You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Definition
Let $m, n \ge 1$ be natural numbers.
Let $U \subset \R^n$ be open.
Let $f : U \to \R^m$ be a mapping.
Then $f$ is a $C^k$-embedding if and only if $f$ is:
- injective
- a $C^k$-immersion
- a homeomorphism on its image
Rank
The rank of an embedding is the rank of its differential at any point.
Smooth Embedding
![]() | This definition needs to be completed. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding or completing the definition. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{DefinitionWanted}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |