Definition:Propositional Tableau/Construction/Finite

From ProofWiki
Jump to navigation Jump to search

Definition

The finite propositional tableaux are precisely those labeled trees singled out by the following bottom-up grammar:

$\boxed{\mathrm{Root}}$ A labeled tree whose only node is its root node is a finite propositional tableau.
For the following clauses, let $t$ be a leaf node of a finite propositional tableau $T$.
$\boxed{\neg \neg}$ If $\neg \neg \mathbf A$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$

is a finite propositional tableau.

$\boxed \land$ If $\mathbf A \land \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg \land}$ If $\neg \left({\mathbf A \land \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg\mathbf B$

is a finite propositional tableau.

$\boxed \lor$ If $\mathbf A \lor \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg\lor}$ If $\neg \left({\mathbf A \lor \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \neg \mathbf B$

is a finite propositional tableau.

$\boxed \implies$ If $\mathbf A \implies \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg\implies}$ If $\neg \left({\mathbf A \implies \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \neg \mathbf B$

is a finite propositional tableau.

$\boxed \iff$ If $\mathbf A \iff \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A \land \mathbf B$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg \mathbf A \land \neg\mathbf B$

is a finite propositional tableau.

$\boxed{\neg\iff}$ If $\neg \left({\mathbf A \iff \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A \land \neg \mathbf B$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg \mathbf A \land \mathbf B$

is a finite propositional tableau.

Note how the boxes give an indication of the ancestor WFF mentioned in the clause.

These clauses together are called the tableau extension rules.


Also see

  • Results about propositional tableaux can be found here.


Linguistic Note

The word tableau originates from the French language, where it means array, display, or table (in the sense of data presentation).

Hence the plural form of tableau is tableaux, although the US generally uses tableaus.

Tableaux is the preferred form on $\mathsf{Pr} \infty \mathsf{fWiki}$.


Sources