Definition:Propositional Tableau

From ProofWiki
Jump to navigation Jump to search

Definition

Propositional tableaux are a specific subset of the labeled trees for propositional logic.


Identification

Let $\struct {T, \mathbf H, \Phi}$ be a labeled tree for propositional logic.


Then $T$ is a propositional tableau if and only if for each node $t$ of $T$ that is not a leaf node:


There exists an ancestor WFF $\mathbf C$ of $t$ such that one of the following conditions holds:
$\boxed{\neg \neg}$ $t$ has precisely one child $s$

$\mathbf C$ is $\neg \neg \mathbf A$

$\map \Phi s = \mathbf A$

$\boxed \land$ $t$ has precisely one child $s$, and one grandchild $r$

$\mathbf C$ is $\mathbf A \land \mathbf B$

$\map \Phi s = \mathbf A$ and $\map \Phi r = \mathbf B$

$\boxed{\land'}$ The parent of $t$ satisfies $\boxed\land$
$\boxed{\neg \land}$ $t$ has precisely two children $s$ and $s'$

$\mathbf C$ is $\neg \paren {\mathbf A \land \mathbf B}$

$\map \Phi s = \mathbf A$ and $\map \Phi {s'} = \mathbf B$

$\boxed \lor$ $t$ has precisely two children $s$ and $s'$

$\mathbf C$ is $\mathbf A \lor \mathbf B$

$\map \Phi s = \mathbf A$ and $\map \Phi {s'} = \mathbf B$

$\boxed{\neg \lor}$ $t$ has precisely one child $s$, and one grandchild $r$

$\mathbf C$ is $\neg \paren {\mathbf A \lor \mathbf B}$

$\map \Phi s = \neg \mathbf A$ and $\map \Phi r = \neg \mathbf B$

$\boxed{\neg \lor'}$ The parent of $t$ satisfies $\boxed{\neg \lor}$
$\boxed \implies$ $t$ has precisely two children $s$ and $s'$

$\mathbf C$ is $\mathbf A \implies \mathbf B$

$\map \Phi s = \neg \mathbf A$ and $\map \Phi {s'} = \mathbf B$

$\boxed{\neg \implies}$ $t$ has precisely one child $s$, and one grandchild $r$

$\mathbf C$ is $\neg \paren {\mathbf A \implies \mathbf B}$

$\map \Phi s = \mathbf A$ and $\map \Phi r = \neg \mathbf B$

$\boxed \iff$ $t$ has precisely two children $s$ and $s'$

$\mathbf C$ is $\mathbf A \iff \mathbf B$

$\map \Phi s = \mathbf A \land \mathbf B$ and $\map \Phi {s'} = \neg \mathbf A \land \neg \mathbf B$

$\boxed{\neg \iff}$ $t$ has precisely two children $s$ and $s'$

$\mathbf C$ is $\neg \paren {\mathbf A \iff \mathbf B}$

$\map \Phi s = \mathbf A \land \neg \mathbf B$ and $\map \Phi {s'} = \neg \mathbf A \land \mathbf B$

Note how the boxes give an indication of the shape of the relevant ancestor WFF $\mathbf C$.


Construction

The finite propositional tableaux are precisely those labeled trees singled out by the following bottom-up grammar:

$\boxed{\mathrm{Root}}$ A labeled tree whose only node is its root node is a finite propositional tableau.
For the following clauses, let $t$ be a leaf node of a finite propositional tableau $T$.
$\boxed{\neg \neg}$ If $\neg \neg \mathbf A$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$

is a finite propositional tableau.

$\boxed \land$ If $\mathbf A \land \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg \land}$ If $\neg \left({\mathbf A \land \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg\mathbf B$

is a finite propositional tableau.

$\boxed \lor$ If $\mathbf A \lor \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg\lor}$ If $\neg \left({\mathbf A \lor \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \neg \mathbf B$

is a finite propositional tableau.

$\boxed \implies$ If $\mathbf A \implies \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \neg\mathbf A$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \mathbf B$

is a finite propositional tableau.

$\boxed{\neg\implies}$ If $\neg \left({\mathbf A \implies \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A$
a child $r$ to $s$, with $\Phi \left({r}\right) = \neg \mathbf B$

is a finite propositional tableau.

$\boxed \iff$ If $\mathbf A \iff \mathbf B$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A \land \mathbf B$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg \mathbf A \land \neg\mathbf B$

is a finite propositional tableau.

$\boxed{\neg\iff}$ If $\neg \left({\mathbf A \iff \mathbf B}\right)$ is an ancestor WFF of $t$, the labeled tree obtained from $T$ by adding:
a child $s$ to $t$, with $\Phi \left({s}\right) = \mathbf A \land \neg \mathbf B$
another child $s'$ to $t$, with $\Phi \left({s'}\right) = \neg \mathbf A \land \mathbf B$

is a finite propositional tableau.

Note how the boxes give an indication of the ancestor WFF mentioned in the clause.

These clauses together are called the tableau extension rules.


Graphical Representation

The conditions by which a propositional tableau may be identified, respectively constructed, can be graphically represented like so:

$\begin{xy}\xymatrix @R=1em @C=3em{ \ar@{.}[d] & \ar@{.}[d] & \ar@{.}[d] & \ar@{.}[d] \\ *++{\neg \neg \mathbf A} \ar@{.}[d] & *++{\mathbf A \land \mathbf B} \ar@{.}[d] & *++{\neg \left({\mathbf A \lor \mathbf B}\right)} \ar@{.}[d] & *++{\neg \left({\mathbf A \implies \mathbf B}\right)} \ar@{.}[d] \\ *++{t} \ar@{-}[d] & *++{t} \ar@{-}[d] & *++{t} \ar@{-}[d] & *++{t} \ar@{-}[d] \\ \mathbf A & \mathbf A \ar@{=}[d] & \neg \mathbf A \ar@{=}[d] & \mathbf A \ar@{=}[d] \\ & \mathbf B & \neg \mathbf B & \neg \mathbf B \\ \boxed{\neg\neg} & \boxed \land & \boxed{\neg\lor} & \boxed{\neg\implies} }\end{xy}$
$\begin{xy}\xymatrix @R=1em @C=1em{ & \ar@{.}[d] & & & & & & \ar@{.}[d] & & & & & & \ar@{.}[d] \\ & *++{\mathbf A \lor \mathbf B} \ar@{.}[d] & & & & & & *++{\neg \left({\mathbf A \land \mathbf B}\right)} \ar@{.}[d] & & & & & & *++{\mathbf A \implies \mathbf B} \ar@{.}[d] \\ & *++{t} \ar@{-}[dl] \ar@{-}[dr] & & & & & & *++{t} \ar@{-}[dl] \ar@{-}[dr] & & & & & & *++{t} \ar@{-}[dl] \ar@{-}[dr] \\ \mathbf A & & \mathbf B & & & & \neg \mathbf A & & \neg \mathbf B & & & & \neg \mathbf A & & \mathbf B \\ & \boxed{\lor} & & & & & & \boxed{\neg \land} & & & & & & \boxed \implies }\end{xy}$
$\begin{xy}\xymatrix @R=1em @C=0.7em{ & \ar@{.}[d] & & & & & & \ar@{.}[d] \\ & *++{\mathbf A \iff \mathbf B} \ar@{.}[d] & & & & & & *++{\neg \left({\mathbf A \iff \mathbf B}\right)} \ar@{.}[d] \\ & *++{t} \ar@{-}[dl] \ar@{-}[dr] & & & & & & *++{t} \ar@{-}[dl] \ar@{-}[dr] \\ *++{\mathbf A \land \mathbf B} & & *++{\neg \mathbf A \land \neg \mathbf B} & & & & *++{\mathbf A \land \neg \mathbf B} & & *++{\neg \mathbf A \land \mathbf B} \\ & \boxed{\iff} & & & & & & \boxed{\neg \iff} }\end{xy}$


Also see

  • Results about propositional tableaux can be found here.


Linguistic Note

The word tableau originates from the French language, where it means array, display, or table (in the sense of data presentation).

Hence the plural form of tableau is tableaux, although the US generally uses tableaus.

Tableaux is the preferred form on $\mathsf{Pr} \infty \mathsf{fWiki}$.


Sources