# Definition:Gradient Operator/Real Cartesian Space

## Definition

Let $\R^n$ denote the real Cartesian space of $n$ dimensions.

Let $\map f {x_1, x_2, \ldots, x_n}$ denote a real-valued function on $\R^n$.

Let $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ be the standard ordered basis on $\R^n$.

Let $\mathbf u = u_1 \mathbf e_1 + u_2 \mathbf e_2 + \cdots + u_n \mathbf e_n = \displaystyle \sum_{k \mathop = 1}^n u_k \mathbf e_k$ be a vector in $\R^n$.

Let the partial derivative of $f$ with respect to $u_k$ exist for all $u_k$.

The **gradient of $f$** (at $\mathbf u$) is defined as:

\(\ds \grad f\) | \(:=\) | \(\ds \nabla f\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \paren {\sum_{k \mathop = 1}^n \mathbf e_k \dfrac \partial {\partial x_k} } \map f {\mathbf u}\) | Definition of Del Operator | |||||||||||

\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac {\map {\partial f} {\mathbf u} } {\partial x_k} \mathbf e_k\) |

In $3$ dimensions with the standard ordered basis $\tuple {\mathbf i, \mathbf j, \mathbf k}$, this is usually rendered:

\(\ds \grad f\) | \(:=\) | \(\ds \nabla f\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \paren {\mathbf i \dfrac \partial {\partial x} + \mathbf j \dfrac \partial {\partial y} + \mathbf k \dfrac \partial {\partial z} } f\) | Definition of Del Operator | |||||||||||

\(\ds \) | \(=\) | \(\ds \dfrac {\partial f} {\partial x} \mathbf i + \dfrac {\partial f} {\partial y} \mathbf j + \dfrac {\partial f} {\partial z} \mathbf k\) |

for a vector $\mathbf u = x \mathbf i + y \mathbf j + z \mathbf k$.

### On a Region

Let $S \subseteq \R^n$.

Let $\sqbrk {X \to Y}$ be the space of functions from $X$ to $Y$.

Suppose that for all $\mathbf x \in S$, $\map {\nabla f} {\mathbf x}$ exists.

The **gradient** can then be defined as an operation acting on $f$:

- $\nabla: \mathbf F \to \sqbrk {S \to \R^n}$
- $\paren {f: \mathbf x \mapsto \map f {\mathbf x} } \mapsto \paren {\nabla f: \mathbf x \mapsto \map {\nabla f} {\mathbf x} }$

where:

- $\mathbf F = \set {f \in \sqbrk {S \to \R}: \nabla f \text{ is defined} }$

That is:

\(\ds \nabla f\) | \(=\) | \(\ds \begin{bmatrix} \frac {\partial f} {\partial x_1} \\ \frac {\partial f} {\partial x_2} \\ \vdots \\ \frac {\partial f} {\partial x_n} \end{bmatrix}\) |

## Also see

- Results about
**gradient**can be found here.

## Sources

- 1968: Murray R. Spiegel:
*Mathematical Handbook of Formulas and Tables*... (previous) ... (next): $\S 22$: The Gradient: $22.29$ - 2005: Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards:
*Calculus*(8th ed.): $\S 13.6$

- For a video presentation of the contents of this page, visit the Khan Academy.

*WARNING: This link is broken. Amend the page to use*`{{KhanAcademySecure}}`

and check that it links to the appropriate page.