Definition:Gradient Operator/Real Cartesian Space
Definition
Let $\R^n$ denote the real Cartesian space of $n$ dimensions.
Let $\map f {x_1, x_2, \ldots, x_n}$ denote a real-valued function on $\R^n$.
Let $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ be the standard ordered basis on $\R^n$.
Let $\ds \mathbf u = u_1 \mathbf e_1 + u_2 \mathbf e_2 + \cdots + u_n \mathbf e_n = \sum_{k \mathop = 1}^n u_k \mathbf e_k$ be a vector in $\R^n$.
Let the partial derivative of $f$ with respect to $u_k$ exist for all $u_k$.
The gradient of $f$ (at $\mathbf u$) is defined as:
\(\ds \grad f\) | \(:=\) | \(\ds \nabla f\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{k \mathop = 1}^n \mathbf e_k \dfrac \partial {\partial x_k} } \map f {\mathbf u}\) | Definition of Del Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 1}^n \dfrac {\map {\partial f} {\mathbf u} } {\partial x_k} \mathbf e_k\) |
Cartesian $3$-Space
In $3$ dimensions this is usually rendered as follows:
Let $R$ be a region of Cartesian $3$-space $\R^3$.
Let $\map F {x, y, z}$ be a scalar field acting over $R$.
Let $\tuple {i, j, k}$ be the standard ordered basis on $\R^3$.
The gradient of $F$ is defined as:
\(\ds \grad F\) | \(:=\) | \(\ds \nabla F\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\mathbf i \dfrac \partial {\partial x} + \mathbf j \dfrac \partial {\partial y} + \mathbf k \dfrac \partial {\partial z} } F\) | Definition of Del Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial F} {\partial x} \mathbf i + \dfrac {\partial F} {\partial y} \mathbf j + \dfrac {\partial F} {\partial z} \mathbf k\) |
On a Region
Let $S \subseteq \R^n$.
Let $\sqbrk {X \to Y}$ be the space of functions from $X$ to $Y$.
Suppose that for all $\mathbf x \in S$, $\map {\nabla f} {\mathbf x}$ exists.
The gradient can then be defined as an operation acting on $f$:
- $\nabla: \mathbf F \to \sqbrk {S \to \R^n}$
- $\paren {f: \mathbf x \mapsto \map f {\mathbf x} } \mapsto \paren {\nabla f: \mathbf x \mapsto \map {\nabla f} {\mathbf x} }$
where:
- $\mathbf F = \set {f \in \sqbrk {S \to \R}: \nabla f \text{ is defined} }$
That is:
\(\ds \nabla f\) | \(=\) | \(\ds \begin {bmatrix} \frac {\partial f} {\partial x_1} \\ \frac {\partial f} {\partial x_2} \\ \vdots \\ \frac {\partial f} {\partial x_n} \end {bmatrix}\) |
Riemannian Manifold
Definition 1
Let $\struct {M, g}$ be a Riemannian manifold equiped with a metric $g$.
Let $f \in \map {\CC^\infty} M$ be a smooth mapping on $M$.
The gradient of $f$ is defined as:
\(\ds \grad f\) | \(:=\) | \(\ds \nabla f\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds g^{-1} \d_{\d R} f\) |
where $\d_{\d R}$ is de Rham differential.
Definition 2
Let $\struct {M, g}$ be a Riemannian manifold equiped with a metric $g$.
Let $f \in \map {C^\infty} M : M \to \R$ be a smooth mapping on $M$.
The gradient of $f$ is the vector field obtained from the differential $\rd f$ obtained by raising an index:
- $\grad f := \paren {\rd f}^\sharp$
Also see
- Results about the gradient operator can be found here.
Sources
- 2005: Roland E. Larson, Robert P. Hostetler and Bruce H. Edwards: Calculus (8th ed.): $\S 13.6$
- For a video presentation of the contents of this page, visit the Khan Academy.