Category:Definitions/Gradient Operator
Jump to navigation
Jump to search
This category contains definitions related to Gradient Operator.
Related results can be found in Category:Gradient Operator.
Geometrical Representation
Let $F$ be a scalar field acting over $R$.
The gradient of $F$ at a point $A$ in $R$ is defined as:
- $\grad F = \dfrac {\partial F} {\partial n} \mathbf {\hat n}$
where:
- $\mathbf {\hat n}$ denotes the unit normal to the equal surface $S$ of $F$ at $A$
- $n$ is the magnitude of the normal vector to $S$ at $A$.
Pages in category "Definitions/Gradient Operator"
The following 13 pages are in this category, out of 13 total.
G
- Definition:Geometrical Representation of Gradient Operator
- Definition:Gradient
- Definition:Gradient Operator
- Definition:Gradient Operator on Cartesian 3-Space
- Definition:Gradient Operator on Riemannian Manifold
- Definition:Gradient Operator/Also known as
- Definition:Gradient Operator/Cartesian 3-Space
- Definition:Gradient Operator/Geometrical Representation
- Definition:Gradient Operator/Real Cartesian Space
- Definition:Gradient Operator/Real Cartesian Space/Region
- Definition:Gradient Operator/Riemannian Manifold
- Definition:Gradient Operator/Riemannian Manifold/Definition 1
- Definition:Gradient Operator/Riemannian Manifold/Definition 2