Definition:Image of Subset under Mapping/Notation

From ProofWiki
Jump to navigation Jump to search

Notation for Image of Subset under Mapping

In parallel with the notation $f \sqbrk X$ for the direct image mapping of $f$, $\mathsf{Pr} \infty \mathsf{fWiki}$ also employs the notation $\map {f^\to} X$.

This latter notation is used in, for example, T.S. Blyth: Set Theory and Abstract Algebra, and is referred to as the mapping induced by $f$:

It should be noted that most mathematicians write $\map f X$ for $\map {f^\to} X$. Now it is quite clear that the mappings $f$ and $f^\to$ are not the same, so we shall retain the notation $f^\to$ to avoid confusion. ... We shall say that the mappings $f^\to$ and $f^\gets$ are the mappings which are induced on the power sets by the mapping $f$.


In a similar manner, the notation $f^{-1} \sqbrk X$, for the premage of a subset under a mapping, otherwise known as the inverse image mapping of $f$, also has the notation $\map {f^\gets} X$ used for it.


Some older sources use the notation $f \mathbin{``} X$ or $\map {f''} X$ for $f \sqbrk X$.

Sources which use the notation $s f$ for $\map f s$ may also use $S f$ or $S^f$ for $f \sqbrk S$.


Some authors do not bother to make the distinction between the image of an element and the image set of a subset, and use the same notation for both:

The notation is bad but not catastrophic. What is bad about it is that if $A$ happens to be both an element of $X$ and a subset of $X$ (an unlikely situation, but far from an impossible one), then the symbol $\map f A$ is ambiguous. Does it mean the value of $f$ at $A$ or does it mean the set of values of $f$ at the elements of $A$? Following normal mathematical custom, we shall use the bad notation, relying on context, and, on the rare occasions when it is necessary, adding verbal stipulations, to avoid confusion.
-- 1960: Paul R. Halmos: Naive Set Theory

Similarly, Allan Clark: Elements of Abstract Algebra, which uses the notation $f x$ for what $\mathsf{Pr} \infty \mathsf{fWiki}$ denotes as $\map f x$, also uses $f X$ for $f \sqbrk X$ without comment on the implications.

In the same way does John D. Dixon: Problems in Group Theory provide us with $S^f$ for $f \sqbrk S$ as an alternative to $\map f S$, again making no notational distinction between the image of the subset and the image of the element.

On $\mathsf{Pr} \infty \mathsf{fWiki}$ this point of view is not endorsed.


Some authors recognise the confusion, and call attention to it, but don't actually do anything about it:

In this way we obtain a map from the set $\powerset X$ of subsets of $X$ to $\powerset Y$; this map is still denoted by $f$, although strictly speaking it should be given a different name.
-- 1970: B. Hartley and T.O. Hawkes: Rings, Modules and Linear Algebra


The above discussion applies equally well to classes as to sets.


Sources