Definition:Preimage/Mapping/Subset
Definition
Let $f: S \to T$ be a mapping.
Let $f^{-1} \subseteq T \times S$ be the inverse of $f$, defined as:
- $f^{-1} = \set {\tuple {t, s}: \map f s = t}$
Let $Y \subseteq T$.
Definition 1
The preimage of $Y$ under $f$ is defined as:
- $f^{-1} \sqbrk Y := \set {s \in S: \exists t \in Y: \map f s = t}$
That is, the preimage of $Y$ under $f$ is the image of $Y$ under $f^{-1}$, where $f^{-1}$ can be considered as a relation.
Definition 2
The preimage of $Y$ under $f$ can be seen to be an element of the codomain of the inverse image mapping $f^\gets: \powerset T \to \powerset S$ of $f$:
- $\forall Y \in \powerset T: \map {f^\gets} Y := \set {s \in S: \exists t \in Y: \map f s = t}$
Thus:
- $\forall Y \subseteq T: f^{-1} \sqbrk Y = \map {f^\gets} Y$
If no element of $Y$ has a preimage, then $f^{-1} \sqbrk Y = \O$.
Class-Theoretical Definition
In the context of class theory, the definition follows the same lines:
Let $V$ be a basic universe.
Let $A \subseteq V$ and $B \subseteq V$ be classes.
Let $f: A \to B$ be a class mapping.
Let $D \subseteq B$.
The preimage of $D$ under $f$ is defined as:
- $f^{-1} \sqbrk D = \set {x \in A: \map f x \in D}$
Also known as
Some sources use counter image or inverse image instead of preimage.
Some sources hyphenate: pre-image.
Some sources use the notation $\map {f^\gets} Y$ for $f^{-1} \sqbrk Y$.
Examples
Subset of Image of Square Root Function
Let $f: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map f x = x^2$
Let $A \subseteq \R$ be defined as:
- $A := \closedint 4 9 = \set {x \in \R: 4 \le x \le 9}$
Then the preimage of $A$ under $f$ is:
- $f^{-1} \sqbrk A = \closedint {-3} {-2} \cup \closedint 2 3$
Let $B \subseteq \R$ be defined as:
- $B := \closedint {-9} {-4} = \set {x \in \R: -9 \le x \le -4}$
Then the preimage of $B$ under $f$ is:
- $f^{-1} \sqbrk B = \O$
Identity Function with Discontinuity
Let $f: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map f x = \begin {cases} x & : x \ne 0 \\ 1 & : x = 0 \end {cases}$
Let the following subsets of $\R$ be defined:
\(\ds A\) | \(=\) | \(\ds \openint \gets 0\) | ||||||||||||
\(\ds B\) | \(=\) | \(\ds \openint 0 \to\) | ||||||||||||
\(\ds C\) | \(=\) | \(\ds \openint 0 1\) | ||||||||||||
\(\ds D\) | \(=\) | \(\ds \openint {-1} 1\) | ||||||||||||
\(\ds E\) | \(=\) | \(\ds \openint {-2} {-1}\) | ||||||||||||
\(\ds F\) | \(=\) | \(\ds \openint {\dfrac 1 2} 2\) |
Then the preimages under $f$ of these sets is:
- $f^{-1} \sqbrk A = \set {x \in \R: \map f x < 0} = \openint \gets 0$
- $f^{-1} \sqbrk B = \set {x \in \R: \map f x > 0} = \openint 0 \to$
- $f^{-1} \sqbrk C = \set {x \in \R: 0 < \map f x < 1} = \openint 0 1$
- $f^{-1} \sqbrk D = \set {x \in \R: -1 < \map f x < 1} = \openint {-1} 0 \cup \openint 0 1$
- $f^{-1} \sqbrk {E \cup F} = \openint {-2} {-1} \cup \openint {\dfrac 1 2} 2 \cup \set 0$
Also see
Generalizations
Related Concepts
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): function (map, mapping)
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): measurable function
- 2002: Thomas Jech: Set Theory (3rd ed.) ... (previous) ... (next): Chapter $1$: Power Set
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): function (map, mapping)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): measurable function