Definition:Incomplete Elliptic Integral of the Third Kind/Definition 1
Jump to navigation
Jump to search
Special Function
- $\ds \map \Pi {k, n, \phi} = \int \limits_0^\phi \frac {\d \phi} {\paren {1 + n \sin^2 \phi} \sqrt{1 - k^2 \sin^2 \phi} }$
is the incomplete elliptic integral of the third kind, and is a function of the variables:
- $k$, defined on the interval $0 < k < 1$
- $n \in \Z$
- $\phi$, defined on the interval $0 \le \phi \le \pi / 2$.
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 34$: Elliptic Functions: Incomplete Elliptic Integral of the Third Kind: $34.5$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 35$: Elliptic Functions: Incomplete Elliptic Integral of the Third Kind: $35.5.$