Definition:Incomplete Elliptic Integral of the Third Kind/Definition 2
Jump to navigation
Jump to search
Special Function
- $\ds \map \Pi {k, n, \phi} = \int \limits_0^x \frac {\d v} {\paren {1 + n v^2} \sqrt {\paren {1 - v^2} \paren {1 - k^2 v^2} } }$
is the incomplete elliptic integral of the third kind, and is a function of the variables:
- $k$, defined on the interval $0 < k < 1$
- $n \in \Z$
- $x = \sin \phi$, where $\phi$ is defined on the interval $0 \le \phi \le \pi / 2$.
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 34$: Elliptic Functions: Incomplete Elliptic Integral of the Third Kind: $34.5$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): elliptic integral
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): elliptic integral
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 35$: Elliptic Functions: Incomplete Elliptic Integral of the Third Kind: $35.5.$