Definition:Index of Fredholm Operator
Jump to navigation
Jump to search
Definition
Let $U, V$ be vector spaces.
Let $T: U \to V$ be a Fredholm operator.
The index of $T$ is defined as:
- $\map {\mathrm{ind} } T := \map \dim {\map \ker T} - \map {\mathrm {codim}} {\Img T}$
where:
- $\map \dim {\map \ker T}$ denotes the dimension of the kernel of $T$
- $\map {\mathrm {codim} } {\Img T}$ denotes the codimension of the image of $T$
Also see
- Linear Transformation is Fredholm Operator iff Pseudoinverse exists
- Definition:Pseudoinverse of Linear Transformation
Sources
- 2002: Peter D. Lax: Functional Analysis: Chapter $27$: Index Theory