Definition:Norm/Matrix Space

From ProofWiki
Jump to navigation Jump to search

Definition

Let $m, n \in \Z_{>0}$ be (strictly) positive integers.

Let $\map {\MM_\GF} {m, n}$ denote the vector space of matrices of order $m \times n$ over a field $\GF$.


A norm over $\map {\MM_\GF} {m, n}$ is known as a matrix norm.

A matrix norm on $\map {\MM_\GF} {m, n}$ is a map from $\map {\MM_\GF} {m, n}$ to the nonnegative reals:

$\norm {\, \cdot \,}: \map {\MM_\GF} {m, n} \to \R_{\ge 0}$

satisfying the (matrix) norm axioms:

\((\text N 1)\)   $:$   Positive Definiteness:      \(\ds \forall \mathbf A \in \map {\MM_\GF} {m, n}:\)    \(\ds \norm {\mathbf A} = 0 \)   \(\ds \iff \)   \(\ds \mathbf A = \mathbf 0_{m, n} \)      where $\mathbf 0_{m, n}$ denotes the zero matrix of order $m \times n$
\((\text N 2)\)   $:$   Positive Homogeneity:      \(\ds \forall x \in \map {\MM_\GF} {m, n}, \lambda \in \GF:\)    \(\ds \norm {\lambda \mathbf A} \)   \(\ds = \)   \(\ds \norm \lambda \times \norm {\mathbf A} \)      where $\norm \lambda$ denotes the (division ring) norm of $\lambda$
\((\text N 3)\)   $:$   Triangle Inequality:      \(\ds \forall \mathbf A, \mathbf B \in \map {\MM_\GF} {m, n}:\)    \(\ds \norm {\mathbf A + \mathbf B} \)   \(\ds \le \)   \(\ds \norm {\mathbf A} + \norm {\mathbf B} \)      


Also known as

A matrix norm can also be styled as norm of matrix.


Also see

  • Results about matrix norms can be found here.


Sources