Definition:Non-Archimedean
Jump to navigation
Jump to search
Definition
Non-Archimedean Norm (Vector Space)
A norm $\norm {\,\cdot\,} $ on $X$ is non-Archimedean if and only if $\norm {\, \cdot \,}$ satisfies the axiom:
\((\text N 4)\) | $:$ | Ultrametric Inequality: | \(\ds \forall x, y \in X:\) | \(\ds \norm {x + y} \) | \(\ds \le \) | \(\ds \max \set {\norm x, \norm y} \) |
Non-Archimedean Norm (Division Ring)
A norm $\norm {\, \cdot \,}$ on $R$ is non-Archimedean if and only if $\norm {\, \cdot \,}$ satisfies the axiom:
\((\text N 4)\) | $:$ | Ultrametric Inequality: | \(\ds \forall x, y \in R:\) | \(\ds \norm {x + y} \) | \(\ds \le \) | \(\ds \max \set {\norm x, \norm y} \) |
Non-Archimedean Metric
A metric $d$ on a metric space $X$ is non-Archimedean if and only if:
- $\map d {x, y} \le \max \set {\map d {x, z}, \map d {y, z} }$
for all $x, y, z \in X$.