Definition:Normal Vector

From ProofWiki
Jump to navigation Jump to search

This page is about Normal Vector. For other uses, see Normal.


Let $S$ be a surface in ordinary $3$-space.

Let $P$ be a point of $S$.

Let $\mathbf n$ be a vector whose initial point is at $P$ such that $\mathbf n$ is perpendicular to $S$ at $P$.

Then $\mathbf n$ is a normal vector to $S$ at $P$.

Also defined as

Some introductory texts, in an attempt to keep concepts simple when first presented, define a normal vector with respect to a plane surface only.

While this definition is appropriate, and completely compatible with this more general case, it is important to note that this definition can (and should) be expanded to include surfaces which are not in fact plane.

Also known as

A normal vector is usually referred to as just a normal (to $S$ at $P$).

It is usually clear from the context that it is a vector which is being referred to.

Also see

  • Results about normal vectors can be found here.