Definition:Numerators and Denominators of Continued Fraction

From ProofWiki
Jump to navigation Jump to search
Not to be confused with Definition:Partial Numerator or Definition:Partial Denominator.



Definition

Let $F$ be a field.

Let $n \in \N \cup \set \infty$ be an extended natural number.

Let $C = \sqbrk {a_0, a_1, a_2, \ldots}$ be a continued fraction in $F$ of length $n$.


Definition 1: recursive definition

The sequence of numerators of $C$ is the sequence $\sequence {p_k}_{0 \mathop \le k \mathop \le n}$ that is recursively defined by:

$p_k = \begin {cases}
 a_0 & : k = 0 \\
 a_1 a_0 + 1 & : k = 1 \\
 a_k p_{k - 1} + p_{k - 2} & : k \ge 2

\end {cases}$

The sequence of denominators of $C$ is the sequence $\sequence {q_k}_{0 \mathop \le k \mathop \le n}$ that is recursively defined by:

$q_k = \begin {cases}
 1 & : k = 0 \\
 a_1 & : k = 1 \\
 a_k q_{k - 1} + q_{k - 2} & : k \ge 2

\end {cases}$


Definition 2: using matrix products

Let $k \ge 0$, and let the indexed matrix product:

$\ds \prod_{i \mathop = 0}^k \begin {pmatrix}
 a_i & 1 \\
 1 & 0

\end {pmatrix} = \begin {pmatrix}

 x_{1 1}^{\paren k} & x_{1 2}^{\paren k} \\
 x_{2 1}^{\paren k} & x_{2 2}^{\paren k}

\end {pmatrix}$ The $k$th numerator is $x_{1 1}^{\paren k}$ and the $k$th denominator is $x_{2 1}^{\paren k}$.




Also see