Definition:Orthogonal (Bilinear Form)/Radical
Jump to navigation
Jump to search
Definition
Let $\mathbb K$ be a field.
Let $V$ be a vector space over $\mathbb K$.
Let $b : V\times V \to \mathbb K$ be a reflexive bilinear form on $V$.
The radical of $V$ is the orthogonal complement of $V$:
- $\operatorname{rad}(V) = V^\perp$