Definition:Orthogonal (Bilinear Form)/Radical

From ProofWiki
Jump to navigation Jump to search

Definition

Let $\mathbb K$ be a field.

Let $V$ be a vector space over $\mathbb K$.

Let $b : V\times V \to \mathbb K$ be a reflexive bilinear form on $V$.


The radical of $V$ is the orthogonal complement of $V$:

$\map {\operatorname {rad} } V = V^\perp$


Also see


Sources