Definition:Orthogonal (Bilinear Form)/Subsets
Jump to navigation
Jump to search
Definition
Let $\mathbb K$ be a field.
Let $V$ be a vector space over $\mathbb K$.
Let $b: V \times V \to \mathbb K$ be a reflexive bilinear form on $V$.
Let $S, T \subset V$ be subsets.
Then $S$ and $T$ are orthogonal if and only if for all $s\in S$ and $t\in T$, $s$ and $t$ are orthogonal: $s \perp t$.