Definition:P-adic Norm

From ProofWiki
Jump to navigation Jump to search


Let $p \in \N$ be a prime.

Let $\nu_p: \Q \to \Z \cup \set {+\infty}$ be the $p$-adic valuation on $\Q$.

The $p$-adic norm on $\Q$ is the mapping $\norm {\,\cdot\,}_p: \Q \to \R_{\ge 0}$ defined as:

$\forall q \in \Q: \norm q_p := \begin{cases} 0 & : q = 0 \\ p^{-\map {\nu_p} q} & : q \ne 0 \end{cases}$

$p$-adic Metric

The $p$-adic metric on $\Q$ is the metric induced by $\norm{\cdot}_p$:

$\forall x, y \in \Q: \map d {x, y} = \norm{x - y}_p$

$p$-adic Numbers

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the $p$-adic numbers.

The norm $\norm {\,\cdot\,}_p$ on $\Q_p$ is called the $p$-adic norm on $\Q_p$.


The $p$-adic norm can only take values from the set $\set {p^n : n \in \Z} \cup \set{0}$

Also, if $a, b \in \Z$, then $a \equiv b \pmod {p^n}$ if and only if $\norm{a - b}_p \le p^{-n}$

Also see