Definition:Real Interval/Unbounded without Endpoints

From ProofWiki
Jump to navigation Jump to search

Definition

The unbounded interval without endpoints is equal to the set of real numbers:

$\openint \gets \to = \R$


Notation

An arbitrary (real) interval is frequently denoted $\mathbb I$.

Sources which use the $\textbf {boldface}$ font for the number sets $\N, \Z, \Q, \R, \C$ tend also to use $\mathbf I$ for this entity.

Some sources merely use the ordinary $\textit {italic}$ font $I$.

Some sources prefer to use $J$.


Wirth Interval Notation

The notation used on this site to denote a real interval is a fairly recent innovation, and was introduced by Niklaus Emil Wirth:

\(\ds \openint a b\) \(:=\) \(\ds \set {x \in \R: a < x < b}\) Open Real Interval
\(\ds \hointr a b\) \(:=\) \(\ds \set {x \in \R: a \le x < b}\) Half-Open (to the right) Real Interval
\(\ds \hointl a b\) \(:=\) \(\ds \set {x \in \R: a < x \le b}\) Half-Open (to the left) Real Interval
\(\ds \closedint a b\) \(:=\) \(\ds \set {x \in \R: a \le x \le b}\) Closed Real Interval


The term Wirth interval notation has consequently been coined by $\mathsf{Pr} \infty \mathsf{fWiki}$.


Also denoted as

The notation using $\infty$ is usual:

\(\ds \openint {-\infty} \infty\) \(:=\) \(\ds \R\)

On $\mathsf{Pr} \infty \mathsf{fWiki}$ the $\gets \cdots \to$ notation is preferred.


Also known as

Some sources refer to this as an open infinite (real) interval.


Also see


Sources