Definition:Divisor Sum Function
Definition
Let $n$ be an integer such that $n \ge 1$.
The divisor sum function $\map {\sigma_1} n$ is defined on $n$ as being the sum of all the positive integer divisors of $n$.
That is:
- $\ds \map {\sigma_1} n = \sum_{d \mathop \divides n} d$
where $\ds \sum_{d \mathop \divides n}$ is the sum over all divisors of $n$.
Sequence of Values of Divisor Sum Function
The divisor sum function for the first $200$ positive integers is as follows:
$\quad \begin{array} {|r|r|} \hline n & \map {\sigma_1} n \\ \hline 1 & 1 \\ 2 & 3 \\ 3 & 4 \\ 4 & 7 \\ 5 & 6 \\ 6 & 12 \\ 7 & 8 \\ 8 & 15 \\ 9 & 13 \\ 10 & 18 \\ 11 & 12 \\ 12 & 28 \\ 13 & 14 \\ 14 & 24 \\ 15 & 24 \\ 16 & 31 \\ 17 & 18 \\ 18 & 39 \\ 19 & 20 \\ 20 & 42 \\ \hline \end{array} \qquad \begin{array} {|r|r|} \hline n & \map {\sigma_1} n \\ \hline 21 & 32 \\ 22 & 36 \\ 23 & 24 \\ 24 & 60 \\ 25 & 31 \\ 26 & 42 \\ 27 & 40 \\ 28 & 56 \\ 29 & 30 \\ 30 & 72 \\ 31 & 32 \\ 32 & 63 \\ 33 & 48 \\ 34 & 54 \\ 35 & 48 \\ 36 & 91 \\ 37 & 38 \\ 38 & 60 \\ 39 & 56 \\ 40 & 90 \\ \hline \end{array} \qquad \begin{array} {|r|r|} \hline n & \map {\sigma_1} n \\ \hline 41 & 42 \\ 42 & 96 \\ 43 & 44 \\ 44 & 84 \\ 45 & 78 \\ 46 & 72 \\ 47 & 48 \\ 48 & 124 \\ 49 & 57 \\ 50 & 93 \\ 51 & 72 \\ 52 & 98 \\ 53 & 54 \\ 54 & 120 \\ 55 & 72 \\ 56 & 120 \\ 57 & 80 \\ 58 & 90 \\ 59 & 60 \\ 60 & 168 \\ \hline \end{array} \qquad \begin{array} {|r|r|} \hline n & \map {\sigma_1} n \\ \hline 61 & 62 \\ 62 & 96 \\ 63 & 104 \\ 64 & 127 \\ 65 & 84 \\ 66 & 144 \\ 67 & 68 \\ 68 & 126 \\ 69 & 96 \\ 70 & 144 \\ 71 & 72 \\ 72 & 195 \\ 73 & 74 \\ 74 & 114 \\ 75 & 124 \\ 76 & 140 \\ 77 & 96 \\ 78 & 168 \\ 79 & 80 \\ 80 & 186 \\ \hline \end{array} \qquad \begin{array} {|r|r|} \hline n & \map {\sigma_1} n \\ \hline 81 & 121 \\ 82 & 126 \\ 83 & 84 \\ 84 & 224 \\ 85 & 108 \\ 86 & 132 \\ 87 & 120 \\ 88 & 180 \\ 89 & 90 \\ 90 & 234 \\ 91 & 112 \\ 92 & 168 \\ 93 & 128 \\ 94 & 144 \\ 95 & 120 \\ 96 & 252 \\ 97 & 98 \\ 98 & 171 \\ 99 & 156 \\ 100 & 217 \\ \hline \end{array}$
$\quad \begin{array} {|r|r|}
\hline
n & \map {\sigma_1} n \\
\hline
101 & 102 \\
102 & 216 \\
103 & 104 \\
104 & 210 \\
105 & 192 \\
106 & 162 \\
107 & 108 \\
108 & 280 \\
109 & 110 \\
110 & 216 \\
111 & 152 \\
112 & 248 \\
113 & 114 \\
114 & 240 \\
115 & 144 \\
116 & 210 \\
117 & 182 \\
118 & 180 \\
119 & 144 \\
120 & 360 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map {\sigma_1} n \\
\hline
121 & 133 \\
122 & 186 \\
123 & 168 \\
124 & 224 \\
125 & 156 \\
126 & 312 \\
127 & 128 \\
128 & 255 \\
129 & 176 \\
130 & 252 \\
131 & 132 \\
132 & 336 \\
133 & 160 \\
134 & 204 \\
135 & 240 \\
136 & 270 \\
137 & 138 \\
138 & 288 \\
139 & 140 \\
140 & 336 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map {\sigma_1} n \\
\hline
141 & 192 \\
142 & 216 \\
143 & 168 \\
144 & 403 \\
145 & 180 \\
146 & 222 \\
147 & 228 \\
148 & 266 \\
149 & 150 \\
150 & 372 \\
151 & 152 \\
152 & 300 \\
153 & 234 \\
154 & 288 \\
155 & 192 \\
156 & 392 \\
157 & 158 \\
158 & 240 \\
159 & 216 \\
160 & 378 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map {\sigma_1} n \\
\hline
161 & 192 \\
162 & 363 \\
163 & 164 \\
164 & 294 \\
165 & 288 \\
166 & 252 \\
167 & 168 \\
168 & 480 \\
169 & 183 \\
170 & 324 \\
171 & 260 \\
172 & 308 \\
173 & 174 \\
174 & 360 \\
175 & 248 \\
176 & 372 \\
177 & 240 \\
178 & 270 \\
179 & 180 \\
180 & 546 \\
\hline
\end{array} \qquad
\begin{array} {|r|r|}
\hline
n & \map {\sigma_1} n \\
\hline
181 & 182 \\
182 & 336 \\
183 & 248 \\
184 & 360 \\
185 & 228 \\
186 & 384 \\
187 & 216 \\
188 & 336 \\
189 & 320 \\
190 & 360 \\
191 & 192 \\
192 & 508 \\
193 & 194 \\
194 & 294 \\
195 & 336 \\
196 & 399 \\
197 & 198 \\
198 & 468 \\
199 & 200 \\
200 & 465 \\
\hline
\end{array}$
Also defined as
Some sources define the divisor sum function of $n$ as the aliquot sum of $n$, that is, sum of the proper divisors of $n$.
Also known as
The divisor sum function is usually referred to as the sigma function, and denoted $\map \sigma n$.
However, there is more than one function which bears that name, so on $\mathsf{Pr} \infty \mathsf{fWiki}$ we use the more explicit name divisor sum function.
Some sources refer to it as just the sum function, but that lacks precision.
Also see
- Results about the divisor sum function can be found here.
Sources
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): Glossary
- 1986: David Wells: Curious and Interesting Numbers ... (previous) ... (next): $12$
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sigma function or $\sigma$ function: 1.
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): sigma function or $\sigma$ function: 2.
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.2$: More about Numbers: Irrationals, Perfect Numbers and Mersenne Primes
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): Glossary
- 1997: David Wells: Curious and Interesting Numbers (2nd ed.) ... (previous) ... (next): $12$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): sigma function (sum function)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): sigma function
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): sigma function