Category:Definitions/Divisors
Jump to navigation
Jump to search
This category contains definitions related to Divisors in the context of Algebra.
Related results can be found in Category:Divisors.
Let $\struct {\Z, +, \times}$ be the ring of integers.
Let $x, y \in \Z$.
Then $x$ divides $y$ is defined as:
- $x \divides y \iff \exists t \in \Z: y = t \times x$
Subcategories
This category has the following 10 subcategories, out of 10 total.
A
- Definitions/Aliquant Parts (3 P)
- Definitions/Aliquot Parts (4 P)
- Definitions/Aliquot Sums (4 P)
C
D
Pages in category "Definitions/Divisors"
The following 28 pages are in this category, out of 28 total.
D
- Definition:Divisor (Algebra)
- Definition:Divisor (Algebra)/Also known as
- Definition:Divisor (Algebra)/Integer
- Definition:Divisor (Algebra)/Integer/Aliquant Part
- Definition:Divisor (Algebra)/Integer/Aliquot Part
- Definition:Divisor (Algebra)/Natural Numbers
- Definition:Divisor (Algebra)/Notation
- Definition:Divisor (Algebra)/Real Number
- Definition:Divisor (Algebra)/Terminology
- Definition:Divisor Count Function
- Definition:Divisor in Natural Numbers
- Definition:Divisor Modulo Integer
- Definition:Divisor Notation
- Definition:Divisor of Polynomial
- Definition:Divisor Sum Function