Symmetric Group on 3 Letters
Group Example
Let $S_3$ denote the set of permutations on $3$ letters.
The symmetric group on $3$ letters is the algebraic structure:
- $\struct {S_3, \circ}$
where $\circ$ denotes composition of mappings.
It is usually denoted, when the context is clear, without the operator: $S_3$.
Cycle Notation
It can be expressed in the form of permutations given in cycle notation as follows:
\(\ds e\) | \(:=\) | \(\ds \text { the identity mapping}\) | ||||||||||||
\(\ds p\) | \(:=\) | \(\ds \tuple {1 2 3}\) | ||||||||||||
\(\ds q\) | \(:=\) | \(\ds \tuple {1 3 2}\) |
\(\ds r\) | \(:=\) | \(\ds \tuple {2 3}\) | ||||||||||||
\(\ds s\) | \(:=\) | \(\ds \tuple {1 3}\) | ||||||||||||
\(\ds t\) | \(:=\) | \(\ds \tuple {1 2}\) |
Cayley Table
- $\begin{array}{c|cccccc}\circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
Group Presentation
Its group presentation is:
- $S_3 := \gen {a, b: a^3 = b^2 = \paren {a b}^2 = e}$
Hence:
- $\begin{array}{c|cccccc} & e & a & a^2 & b & a b & a^2 b \\ \hline e & e & a & a^2 & b & a b & a^2 b \\ a & a & a^2 & e & a b & a^2 b & b \\ a^2 & a^2 & e & a & a^2 b & b & a b \\ b & b & a^2 b & a b & e & a^2 & a \\ a b & a b & b & a^2 b & a & e & a^2 \\ a^2 b & a^2 b & a b & b & a^2 & a & e \\ \end{array}$
Order of Elements
The orders of the various elements of $S_3$ are:
\(\ds e: \, \) | \(\ds \) | \(\) | \(\ds \) | Order $1$ | ||||||||||
\(\ds \tuple {123}: \, \) | \(\ds \tuple {123}^2\) | \(=\) | \(\ds \tuple {132}\) | |||||||||||
\(\ds \tuple {123} \tuple {132}\) | \(=\) | \(\ds e\) | hence Order $3$ | |||||||||||
\(\ds \tuple {132}: \, \) | \(\ds \tuple {132}^2\) | \(=\) | \(\ds \tuple {123}\) | |||||||||||
\(\ds \tuple {132} \tuple {123}\) | \(=\) | \(\ds e\) | hence Order $3$ | |||||||||||
\(\ds \tuple {12}: \, \) | \(\ds \tuple {12}^2\) | \(=\) | \(\ds e\) | hence Order $2$ | ||||||||||
\(\ds \tuple {13}: \, \) | \(\ds \tuple {13}^2\) | \(=\) | \(\ds e\) | hence Order $2$ | ||||||||||
\(\ds \tuple {23}: \, \) | \(\ds \tuple {23}^2\) | \(=\) | \(\ds e\) | hence Order $2$ |
Subgroups
The subsets of $S_3$ which form subgroups of $S_3$ are:
\(\ds \) | \(\) | \(\ds S_3\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {13} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {23} }\) |
Normal Subgroups
Consider the subgroups of $S_3$:
The subsets of $S_3$ which form subgroups of $S_3$ are:
\(\ds \) | \(\) | \(\ds S_3\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {13} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {e, \tuple {23} }\) |
Of those, the normal subgroups in $S_3$ are:
- $S_3, \set e, \set {e, \tuple {123}, \tuple {132} }$
Generators
Let:
\(\ds G_1\) | \(=\) | \(\ds \set {\tuple {123}, \tuple {12} }\) | ||||||||||||
\(\ds G_2\) | \(=\) | \(\ds \set {\tuple {13}, \tuple {23} }\) |
Then:
\(\ds S_3\) | \(=\) | \(\ds \gen {G_1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \gen {G_2}\) |
where $\gen G$ denotes the group generated by a subset $G$ of $S_3$.
Centralizers
The centralizers of each element of $S_3$ are given by:
\(\ds \map {C_{S_3} } e\) | \(=\) | \(\ds S_3\) | ||||||||||||
\(\ds \map {C_{S_3} } {123}\) | \(=\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \map {C_{S_3} } {132}\) | \(=\) | \(\ds \set {e, \tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \map {C_{S_3} } {12}\) | \(=\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \map {C_{S_3} } {23}\) | \(=\) | \(\ds \set {e, \tuple {23} }\) | ||||||||||||
\(\ds \map {C_{S_3} } {13}\) | \(=\) | \(\ds \set {e, \tuple {13} }\) |
Normalizers of Subgroups
The normalizers of each subgroup of $S_3$ are given by:
\(\ds \map {N_{S_3} } {\set e}\) | \(=\) | \(\ds S_3\) | ||||||||||||
\(\ds \map {N_{S_3} } {\set {e, \tuple {123}, \tuple {132} } }\) | \(=\) | \(\ds S_3\) | ||||||||||||
\(\ds \map {N_{S_3} } {\set {e, \tuple {12} } }\) | \(=\) | \(\ds \set {e, \tuple {12} }\) | ||||||||||||
\(\ds \map {N_{S_3} } {\set {e, \tuple {13} } }\) | \(=\) | \(\ds \set {e, \tuple {13} }\) | ||||||||||||
\(\ds \map {N_{S_3} } {\set {e, \tuple {23} } }\) | \(=\) | \(\ds \set {e, \tuple {23} }\) | ||||||||||||
\(\ds \map {N_{S_3} } {S_3}\) | \(=\) | \(\ds S_3\) |
Center
The center of $S_3$ is given by:
- $\map Z {S_3} = \set e$
Conjugacy Classes
The conjugacy classes of $S_3$ are:
\(\ds \) | \(\) | \(\ds \set e\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {\tuple {123}, \tuple {132} }\) | ||||||||||||
\(\ds \) | \(\) | \(\ds \set {\tuple {12}, \tuple {13}, \tuple {23} }\) |
Also see
- Symmetric Group is Group, which demonstrates that this is a (finite) group.
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): permutation: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): permutation: 2.