Symmetric Group on 3 Letters/Group Presentation
Jump to navigation
Jump to search
Group Presentation of Symmetric Group on $3$ Letters
The group presentation of the symmetric group on $3$ letters is given by:
- $S_3 := \gen {a, b: a^3 = b^2 = \paren {a b}^2 = e}$
Hence:
- $\begin{array}{c|cccccc} & e & a & a^2 & b & a b & a^2 b \\ \hline e & e & a & a^2 & b & a b & a^2 b \\ a & a & a^2 & e & a b & a^2 b & b \\ a^2 & a^2 & e & a & a^2 b & b & a b \\ b & b & a^2 b & a b & e & a^2 & a \\ a b & a b & b & a^2 b & a & e & a^2 \\ a^2 b & a^2 b & a b & b & a^2 & a & e \\ \end{array}$
Proof
Let $G = \gen {a, b: a^3 = b^2 = \paren {a b}^2 = e}$.
It is to be demonstrated that $S_3$ is isomorphic to $G$.
Consider the Cayley table for $S_3$:
- $\begin{array}{c|cccccc} \circ & e & (123) & (132) & (23) & (13) & (12) \\ \hline e & e & (123) & (132) & (23) & (13) & (12) \\ (123) & (123) & (132) & e & (13) & (12) & (23) \\ (132) & (132) & e & (123) & (12) & (23) & (13) \\ (23) & (23) & (12) & (13) & e & (132) & (123) \\ (13) & (13) & (23) & (12) & (123) & e & (132) \\ (12) & (12) & (13) & (23) & (132) & (123) & e \\ \end{array}$
We demonstrate that $S_3$ is isomorphic to $G$ as follows:
Let $\phi: G \to S_3$ be a mapping that sends:
- $\phi: a \mapsto p$
- $\phi: b \mapsto r$
We have:
- $p^3 = e$
- $r^2 = e$
- $\paren {p r}^2 = s^2 = e$
demonstrating that $S_3$ has the same group presentation as $G$.
Hence the result.
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $25$. Cyclic Groups and Lagrange's Theorem
- 1967: John D. Dixon: Problems in Group Theory ... (previous) ... (next): $1$: Subgroups: Problem $1.1$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $5$: Cosets and Lagrange's Theorem: Example $5.2$