# Definition:Uniform Convergence

This article is complete as far as it goes, but it could do with expansion.In particular: Extend this definition to whatever other topological spaces this can be made to make sense for.You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding this information.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Expand}}` from the code.If you would welcome a second opinion as to whether your work is correct, add a call to `{{Proofread}}` the page. |

## Definition

### Metric Space

Let $S$ be a set.

Let $M = \struct {A, d}$ be a metric space.

Let $\sequence {f_n}$ be a sequence of mappings $f_n: S \to A$.

Let:

- $\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N, \forall x \in S: \map d {\map {f_n} x, \map f x} < \epsilon$

Then **$\sequence {f_n}$ converges to $f$ uniformly on $S$ as $n \to \infty$**.

### Real Sequences

The above definition can be applied directly to the real numbers treated as a metric space:

Let $\sequence {f_n}$ be a sequence of real functions defined on $D \subseteq \R$.

Let:

- $\forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N, \forall x \in D: \size {\map {f_n} x - \map f x} < \epsilon$

That is:

- $\ds \forall \epsilon \in \R_{>0}: \exists N \in \R: \forall n \ge N: \sup_{x \mathop \in D} \size {\map {f_n} x - \map f x} < \epsilon$

Then **$\sequence {f_n}$ converges to $f$ uniformly on $D$ as $n \to \infty$**.

### Infinite Series

Let $S \subseteq \R$.

Let $\sequence {f_n}$ be a sequence of real functions $S \to \R$.

Let $\sequence {s_n}$ be sequence of real functions $S \to \R$ with:

- $\ds \map {s_n} x = \sum_{k \mathop = 1}^n \map {f_n} x$

for each $n \in \N$ and $x \in S$.

We say that:

- $\ds \sum_{n \mathop = 1}^\infty f_n$

**converges uniformly** to a real function $f: S \to \R$ on $S$ if and only if $\sequence {s_n}$ converges uniformly to $f$ on $S$.

## Also defined as

Some sources insist that $N \in \N$ but this is unnecessary and makes proofs more cumbersome.

## Also see

- Results about
**uniform convergence**can be found**here**.

## Comment

This page or section has statements made on it that ought to be extracted and proved in a Theorem page.In particular: House style: our position is that a "comment" section is lameYou can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by creating any appropriate Theorem pages that may be needed.To discuss this page in more detail, feel free to use the talk page. |

Note that this definition of convergence of a function is stronger than that for pointwise convergence, in which it is necessary to specify a value of $N$ given $\epsilon$ for each individual point.

In uniform convergence, given $\epsilon$ you need to specify a value of $N$ which holds for *all* points in the domain of the function.

## Historical Note

The concept of uniform convergence was created by Karl Weierstrass during his investigation of power series.

## Sources

- 2000: James R. Munkres:
*Topology*(2nd ed.): $\S 21$ - 2014: Christopher Clapham and James Nicholson:
*The Concise Oxford Dictionary of Mathematics*(5th ed.) ... (previous) ... (next):**convergence of functions** - 2014: Christopher Clapham and James Nicholson:
*The Concise Oxford Dictionary of Mathematics*(5th ed.) ... (previous) ... (next):**uniform convergence**