Real Number Line is Metric Space
Jump to navigation
Jump to search
Theorem
Let $\R$ be the real number line.
Let $d: \R \times \R \to \R$ be defined as:
- $\map d {x_1, x_2} = \size {x_1 - x_2}$
where $\size x$ is the absolute value of $x$.
Then $d$ is a metric on $\R$ and so $\struct {\R, d}$ is a metric space.
Proof
Proof of Metric Space Axiom $(\text M 1)$
\(\ds \map d {x, x}\) | \(=\) | \(\ds \size {x - x}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 0\) | Definition of Absolute Value |
So Metric Space Axiom $(\text M 1)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality
\(\ds \map d {x, y} + \map d {y, z}\) | \(=\) | \(\ds \size {x - y} + \size {y - z}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(\ge\) | \(\ds \size {\paren {x - y} + \paren {y - z} }\) | Triangle Inequality for Real Numbers | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {x - z}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map d {x, z}\) | Definition of $d$ |
So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 3)$
\(\ds \map d {x, y}\) | \(=\) | \(\ds \size {x - y}\) | Definition of $d$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {y - x}\) | Definition of Absolute Value | |||||||||||
\(\ds \) | \(=\) | \(\ds \map d {y, x}\) | Definition of $d$ |
So Metric Space Axiom $(\text M 3)$ holds for $d$.
$\Box$
Proof of Metric Space Axiom $(\text M 4)$
\(\ds x\) | \(\ne\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \size {x - y}\) | \(>\) | \(\ds 0\) | Definition of Absolute Value | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map d {x, y}\) | \(>\) | \(\ds 0\) | Definition of $d$ |
So Metric Space Axiom $(\text M 4)$ holds for $d$.
$\blacksquare$
Sources
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $2$: Metric Spaces: $\S 2$: Metric Spaces: Theorem $2.2$
- 1978: Lynn Arthur Steen and J. Arthur Seebach, Jr.: Counterexamples in Topology (2nd ed.) ... (previous) ... (next): Part $\text {II}$: Counterexamples: $28$. Euclidean Topology: $1$