Definition:Universal Quantifier/Notational Variants
Jump to navigation
Jump to search
Definition
Various symbols are encountered that denote the concept of universal quantifier:
Symbol | Origin |
---|---|
$\forall x$ | Gerhard Gentzen: Untersuchungen über das logische Schließen (1935) |
$\paren x$ | 1910: Alfred North Whitehead and Bertrand Russell: Principia Mathematica |
$\Pi x$ | Łukasiewicz's Polish notation |
$\wedge x$ or $\bigwedge x$ | |
$\ds \operatorname{\Large {\textsf A} } \limits_{x, y, \dotsc}$ | 1946: Alfred Tarski: Introduction to Logic and to the Methodology of Deductive Sciences |
Sources
- 1973: Irving M. Copi: Symbolic Logic (4th ed.) ... (previous) ... (next): $4$: Propositional Functions and Quantifiers: $4.1$: Singular Propositions and General Propositions
- 1980: D.J. O'Connor and Betty Powell: Elementary Logic ... (previous) ... (next): Appendix
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): quantifier
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): quantifier