Derivative of Dot Product of Vector-Valued Functions/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a: \R \to \R^n$ and $\mathbf b: \R \to \R^n$ be differentiable vector-valued functions.


The derivative of their dot product is given by:

$\map {\dfrac \d {\d x} } {\mathbf a \cdot \mathbf b} = \dfrac {\d \mathbf a} {\d x} \cdot \mathbf b + \mathbf a \cdot \dfrac {\d \mathbf b} {\d x}$


Proof

Let:

$\mathbf a: x \mapsto \tuple {\map {a_1} x, \map {a_2} x, \ldots, \map {a_n} x}$
$\mathbf b: x \mapsto \tuple {\map {b_1} x, \map {b_2} x, \ldots, \map {b_n} x}$


Then:

\(\ds \map {\frac \d {\d x} } {\mathbf a \cdot \mathbf b}\) \(=\) \(\ds \map {\frac \d {\d x} } {\sum_{i \mathop = 1}^n a_i b_i}\) Definition of Dot Product
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {\frac \d {\d x} } {a_i b_i}\) Sum Rule for Derivatives
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {\map {\frac \d {\d x} } {a_i} b_i + a_i \map {\frac \d {\d x} } {b_i} }\) Product Rule for Derivatives
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \map {\frac \d {\d x} } {a_i} b_i + \sum_{i \mathop = 1}^n a_i \map {\frac \d {\d x} } {b_i}\) Summation is Linear
\(\ds \) \(=\) \(\ds \dfrac {\d \mathbf a} {\d x} \cdot \mathbf b + \mathbf a \cdot \dfrac {\d \mathbf b} {\d x}\) Definition of Dot Product

$\blacksquare$


Sources