Derivative of Inverse Hyperbolic Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ denote the open real interval:

$S := \openint {-1} 1$

Let $x \in S$.

Let $\tanh^{-1} x$ be the inverse hyperbolic tangent of $x$.


Then:

$\map {\dfrac \d {\d x} } {\tanh^{-1} x} = \dfrac 1 {1 - x^2}$


Proof

\(\displaystyle y\) \(=\) \(\displaystyle \tanh^{-1} x\)
\(\displaystyle \leadsto \ \ \) \(\displaystyle x\) \(=\) \(\displaystyle \tanh y\) Definition of Real Inverse Hyperbolic Tangent
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac {\d x} {\d y}\) \(=\) \(\displaystyle \sech^2 y\) Derivative of Hyperbolic Tangent Function
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac {\d y} {\d x}\) \(=\) \(\displaystyle \frac 1 {\sech^2 y}\) Derivative of Inverse Function
\(\displaystyle \leadsto \ \ \) \(\displaystyle \frac {\d y} {\d x}\) \(=\) \(\displaystyle \frac 1 {1 - \tanh^2 y}\) Sum of Squares of Hyperbolic Secant and Tangent
\(\displaystyle \leadsto \ \ \) \(\displaystyle \map {\frac \d {\d x} } {\tanh^{-1} x}\) \(=\) \(\displaystyle \frac 1 {1 - x^2}\) Definition of $x$ and $y$

$\blacksquare$


Sources