Derivatives of PGF of Binomial Distribution
Jump to navigation
Jump to search
Theorem
Let $X$ be a discrete random variable with the binomial distribution with parameters $n$ and $p$.
Then the derivatives of the PGF of $X$ with respect to $s$ are:
- $\dfrac {\d^k} {\d s^k} \map {\Pi_X} s = \begin {cases} n^{\underline k} p^k \paren {q + p s}^{n-k} & : k \le n \\ 0 & : k > n \end {cases}$
where:
- $n^{\underline k}$ is the falling factorial
- $q = 1 - p$
Proof
The Probability Generating Function of Binomial Distribution is:
- $\map {\Pi_X} s = \paren {q + p s}^n$
where $q = 1 - p$.
From Derivatives of Function of $a x + b$:
- $\map {\dfrac {\d^k} {\d s^k} } {\map f {q + p s} } = p^k \dfrac {\d^k} {\d z^k} \paren {\map f z}$
where $z = q + p s$.
Here we have that $\map f z = z^n$.
From Nth Derivative of Mth Power:
- $\dfrac {\d^k} {\d z^k} z^n = \begin {cases} n^{\underline k} z^{n - k} & : k \le n \\ 0 & : k > n \end {cases}$
So putting it together:
- $\dfrac {\d^k} {\d s^k} \map {\Pi_X} s = \begin {cases} n^{\underline k} p^k \paren {q + p s}^{n - k} & : k \le n \\ 0 & : k > n \end {cases}$
$\blacksquare$
Sources
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): probability generating function
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): probability generating function