Differential Equation defining Confocal Conics

From ProofWiki
Jump to navigation Jump to search

Theorem

Consider the equation:

$(1): \quad \dfrac {x^2} {a^2 + \lambda} + \dfrac {y^2} {b^2 + \lambda} = 1$

where $a^2 > b^2$ and $-\lambda < a^2$.

defining the set of confocal conics whose foci are at $\tuple {\pm \sqrt {a^2 - b^2}, 0}$.


The differential equation defining these confocal conics is:

$x y \paren {\paren {y'}^2 - 1} + \paren {x^2 - y^2 - a^2 + b^2} y' = 0$


Proof

\(\ds \dfrac {x^2} {a^2 + \lambda}\) \(=\) \(\ds 1 - \dfrac {y^2} {b^2 + \lambda}\) from $(1)$
\(\ds \) \(=\) \(\ds \dfrac {b^2 + \lambda - y^2} {b^2 + \lambda}\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds a^2 + \lambda\) \(=\) \(\ds \dfrac {x^2 \paren {b^2 + \lambda} } {b^2 + \lambda - y^2}\)
\(\ds \dfrac {y^2} {b^2 + \lambda}\) \(=\) \(\ds 1 - \dfrac {x^2} {a^2 + \lambda}\) from $(1)$
\(\ds \) \(=\) \(\ds \dfrac {a^2 + \lambda - x^2} {a^2 + \lambda}\)
\(\text {(3)}: \quad\) \(\ds \leadsto \ \ \) \(\ds b^2 + \lambda\) \(=\) \(\ds \dfrac {y^2 \paren {a^2 + \lambda} } {a^2 + \lambda - x^2}\)


Then we have:

\(\ds \map {\dfrac \d {\d x} } {\dfrac {x^2} {a^2 + \lambda} + \dfrac {y^2} {b^2 + \lambda} }\) \(=\) \(\ds \map {\dfrac \d {\d x} } 1\) Differentiating $(1)$ with respect to $x$
\(\text {(4)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac {2 x} {a^2 + \lambda} + \dfrac {2 y} {b^2 + \lambda} \dfrac {\d y} {\d x}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \paren {a^2 + \lambda} y'\) \(=\) \(\ds -\dfrac {2 x} {2 y} \paren {b^2 + \lambda}\) putting $y' = \dfrac {\d y} {\d x}$
\(\ds \) \(=\) \(\ds -\dfrac x y \dfrac {y^2 \paren {a^2 + \lambda} } {a^2 + \lambda - x^2}\) from $(3)$
\(\ds \leadsto \ \ \) \(\ds y'\) \(=\) \(\ds -\dfrac {x y} {a^2 + \lambda - x^2}\)
\(\ds \leadsto \ \ \) \(\ds y' \paren {a^2 + \lambda}\) \(=\) \(\ds x^2 y' - x y\)
\(\text {(5)}: \quad\) \(\ds \leadsto \ \ \) \(\ds a^2 + \lambda\) \(=\) \(\ds \dfrac {x^2 y' - x y} {y'}\)

and similarly:

\(\ds \paren {b^2 + \lambda}\) \(=\) \(\ds -\dfrac {2 y} {2 x} \paren {a^2 + \lambda} y'\) from $(4)$, putting $y' = \dfrac {\d y} {\d x}$
\(\ds \) \(=\) \(\ds -\dfrac {y y'} x \dfrac {x^2 \paren {b^2 + \lambda} } {b^2 + \lambda - y^2}\) from $(2)$
\(\ds \leadsto \ \ \) \(\ds 1\) \(=\) \(\ds -\dfrac {x y y'} {b^2 + \lambda - y^2}\)
\(\text {(6)}: \quad\) \(\ds \leadsto \ \ \) \(\ds b^2 + \lambda\) \(=\) \(\ds y^2 - x y y'\)


Eliminating $\lambda$:

\(\ds b^2 + \paren {\dfrac {x^2 y' - x y} {y'} - a^2}\) \(=\) \(\ds y^2 - x y y'\) from $(5)$ and $(6)$
\(\ds \leadsto \ \ \) \(\ds y' \paren {b^2 - a^2} + x^2 y' - x y - y^2 y + x y \paren {y'}^2\) \(=\) \(\ds 0\) multiplying through by $y'$ and rearranging
\(\ds \leadsto \ \ \) \(\ds x y \paren {\paren {y'}^2 - 1} + \paren {x^2 - y^2 - a^2 + b^2} y'\) \(=\) \(\ds 0\) multiplying through by $y'$ and rearranging

$\blacksquare$


Sources