Digamma Additive Formula
Jump to navigation
Jump to search
Theorem
Let $n \in \N_{>0}$ where $\N_{>0}$ denotes the non-zero natural numbers.
Let $z \in \C \cap z \notin \set {-\dfrac m n: m \in \N}$
Then:
- $\ds \map \psi {n z} = \frac 1 n \sum_{k \mathop = 0}^{n - 1} \map \psi {z + \frac k n} + \ln n$
where:
- $\psi$ is the digamma function
- $\ln$ is the complex natural logarithm.
Corollary
Let $n \in \N_{>0}$ where $\N_{>0}$ denotes the non-zero natural numbers.
Then:
- $\ds \sum_{k \mathop = 1}^{n - 1} \map \psi {\frac k n} = -\paren {n - 1} \gamma - n \ln n$
where:
- $\psi$ is the digamma function
- $\ln$ is the complex natural logarithm.
- $\gamma$ denotes the Euler-Mascheroni constant.
Proof
\(\ds \paren {2 \pi}^{\paren {n - 1} / 2} n^{1/2 - n z} \map \Gamma {n z}\) | \(=\) | \(\ds \prod_{k \mathop = 0}^{n - 1} \map \Gamma {z + \frac k n}\) | Gauss Multiplication Formula | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {\frac {n - 1} 2 } \map \ln {2 \pi} + \paren {\frac 1 2 - n z} \map \ln n + \map \ln {\map \Gamma {n z} }\) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} \map \ln {\map \Gamma {z + \frac k n} }\) | taking the complex natural logarithm of both sides, Sum of Complex Logarithms | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds -n \map \ln n + n \map \psi {n z}\) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} \map \psi {z + \frac k n}\) | taking the derivative of both sides, Definition of Digamma Function | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \psi {n z}\) | \(=\) | \(\ds \frac 1 n \sum_{k \mathop = 0}^{n - 1} \map \psi {z + \frac k n} + \ln n\) | dividing by $n$ and moving $\ln n$ to right hand side |
$\blacksquare$
Also see
- Gauss Multiplication Formula
- Product Formula for Sine
- Cotangent Additive Formula
- General Harmonic Number Additive Formula
Sources
- 1985: Bruce C. Berndt: Ramanujan's Notebooks: Part I: Chapter $8$. Analogues of the Gamma Function
- Weisstein, Eric W. "Polygamma Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PolygammaFunction.html