Gauss Multiplication Formula
Jump to navigation
Jump to search
Theorem
Let $\Gamma$ denote the Gamma Function.
Let $n \in \N_{>0}$ where $\N_{>0}$ denotes the non-zero natural numbers.
Then:
- $\ds \forall z \notin \set {-\frac m n: m \in \N}: \prod_{k \mathop = 0}^{n - 1} \map \Gamma {z + \frac k n} = \paren {2 \pi}^{\paren {n - 1} / 2} n^{1/2 - n z} \map \Gamma {n z}$
Proof
\(\ds \map \Gamma {z + \frac k n}\) | \(=\) | \(\ds \paren {z + \frac k n - 1} \map \Gamma {z + \frac k n - 1}\) | Gamma Difference Equation | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \paren {z + \frac k n - 1} \frac {m! m^{z + k / n - 1} } {\paren {z + \frac k n - 1} \paren {z + \frac k n} \paren {z + \frac k n + 1} \paren {z + \frac k n + 2} \cdots \paren {z + \frac k n - 1 + m} }\) | Definition of Euler Form of Gamma Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\sqrt {2 \pi m} \paren {\frac m e}^m m^{z + k / n - 1} } {\paren {z + \frac k n} \paren {z + \frac k n + 1} \paren {z + \frac k n + 2} \cdots \paren {z + \frac k n - 1 + m} }\) | Stirling's Formula and canceling $\paren {z + \frac k n - 1}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\sqrt {2 \pi m} \paren {\frac m e}^m m^{z + k / n - 1} } {\paren {z + \frac k n} \paren {z + \frac k n + 1} \paren {z + \frac k n + 2} \cdots \paren {z + \frac k n - 1 + m} } \times \frac {n^m} {n^m}\) | multiplying top and bottom by $n^m$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\sqrt {2 \pi} \paren {\frac {m n} e}^m m^{z + k / n - 1/2} } {\paren {n z + k} \paren {n z + k + n} \paren {n z + k + 2n} \cdots \paren {n z + k - n + m n} }\) |
Taking the product for $k = 0$ to $n - 1$, we have:
\(\ds \prod_{k \mathop = 0}^{n - 1} \map \Gamma {z + \frac k n}\) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\paren {\sqrt {2 \pi} }^n \paren {\frac {m n} e}^{m n} m^{n z - n / 2} m^{\sum_{k \mathop = 0}^{n - 1} k / n} } {\paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m n} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\paren {\sqrt {2 \pi} }^n \paren {\frac {m n} e}^{m n} m^{n z - n / 2 + n / 2 - 1 / 2 } } {\paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m n} }\) | Sum of Arithmetic Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\paren {\sqrt {2 \pi} }^n \paren {\frac m e}^m m^{n z - 1 / 2} n^{1 / 2 - n z} } {\paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m} }\) | substituting $m n \mapsto m$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\paren {\sqrt {2 \pi} }^{n - 1} m! m^{n z - 1} n^{1 / 2 - n z} } {\paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m} }\) | Stirling's Formula | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{m \mathop \to \infty} \frac {\paren {n z - 1} } {\paren {n z - 1} } \times \frac {\paren {\sqrt {2 \pi} }^{n - 1} m! m^{n z - 1} n^{1 / 2 - n z} } {\paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m} }\) | multiplying top and bottom by $n z - 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \pi}^{\paren {n - 1} / 2} n^{1 / 2 - n z} \paren {n z - 1} \lim_{m \mathop \to \infty} \frac {m! m^{n z - 1} } {\paren {n z - 1} \paren {n z} \paren {n z + 1} \cdots \paren {n z - 1 + m} }\) | bringing $\paren {2 \pi}^{\paren {n - 1} / 2} n^{1 / 2 - n z} \paren {n z - 1}$ outside the limit | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \pi}^{\paren {n - 1} / 2} n^{1 / 2 - n z} \paren {n z - 1} \map \Gamma {n z - 1}\) | Definition of Euler Form of Gamma Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {2 \pi}^{\paren {n - 1} / 2} n^{1 / 2 - n z} \map \Gamma {n z}\) | Gamma Difference Equation |
$\blacksquare$
Also see
Source of Name
This entry was named for Carl Friedrich Gauss.
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 16$: Relationships Among Gamma Functions: $16.10$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 25$: The Gamma Function: Relationships Among Gamma Functions: $25.10.$
- Weisstein, Eric W. "Gauss Multiplication Formula." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GaussMultiplicationFormula.html