Digamma Function of One Sixth/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {\dfrac 1 6} = -\gamma - 2 \ln 2 - \dfrac 3 2 \ln 3 - \dfrac {\pi \sqrt 3} 2$


Proof

\(\ds \map \psi {\frac 1 6}\) \(=\) \(\ds -\gamma - \ln 12 - \frac \pi 2 \map \cot {\frac 1 6 \pi} + 2 \sum_{n \mathop = 1}^{\ceiling {6 / 2} - 1} \map \cos {\frac {2 \pi n} 6} \map \ln {\map \sin {\frac {\pi n} 6} }\) Gauss's Digamma Theorem
\(\ds \) \(=\) \(\ds -\gamma - 2 \ln 2 - \ln 3 - \frac \pi 2 \times \sqrt 3 + 2 \paren {\frac 1 2 \times \map \ln {\frac 1 2} + \paren {-\frac 1 2} \times \map \ln {\frac {\sqrt 3} 2} }\) Cotangent of $30 \degrees$, Cosine of $60 \degrees$, Cosine of $120 \degrees$, Sine of $30 \degrees$, Sine of $60 \degrees$ and Sum of Logarithms
\(\ds \) \(=\) \(\ds -\gamma - 2 \ln 2 - \ln 3 - \dfrac {\pi \sqrt 3} 2 + \paren {\map \ln {\frac 1 2} - \map \ln {\frac {\sqrt 3} 2} }\)
\(\ds \) \(=\) \(\ds -\gamma - 2 \ln 2 - \ln 3 - \dfrac {\pi \sqrt 3} 2 + \paren {\paren {\ln 1 - \ln 2} - \paren {\frac 1 2 \ln 3 - \ln 2} }\) Difference of Logarithms and Logarithm of Power
\(\ds \) \(=\) \(\ds -\gamma - 2 \ln 2 - \dfrac 3 2 \ln 3 - \dfrac {\pi \sqrt 3} 2\) Logarithm of 1 is 0

$\blacksquare$