Digamma Function of One Sixth/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \psi {\dfrac 1 6} = -\gamma - 2 \ln 2 - \dfrac 3 2 \ln 3 - \dfrac {\pi \sqrt 3} 2$


Proof

\(\ds \sum_{k \mathop = 1}^{n - 1} \map \psi {\frac k n}\) \(=\) \(\ds -\paren {n - 1} \gamma - n \ln n\) Digamma Additive Formula: Corollary
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 1}^{6 - 1} \map \psi {\frac k 6}\) \(=\) \(\ds -\paren {6 - 1} \gamma - 6 \ln 6\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 6} + \map \psi {\frac 2 6} + \map \psi {\frac 3 6} + \map \psi {\frac 4 6} + \map \psi {\frac 5 6}\) \(=\) \(\ds -5 \gamma - 6 \ln 6\)
\(\text {(2)}: \quad\) \(\ds \map \psi {\frac 1 6} - \map \psi {\frac 5 6}\) \(=\) \(\ds -\pi \map \cot {\frac \pi 6}\) Digamma Reflection Formula
\(\ds \leadsto \ \ \) \(\ds 2 \map \psi {\frac 1 6} + \map \psi {\frac 2 6} + \map \psi {\frac 3 6} + \map \psi {\frac 4 6}\) \(=\) \(\ds -5 \gamma - 6 \ln 6 - \pi \map \cot {\frac \pi 6}\) adding lines $1$ and $2$
\(\ds \leadsto \ \ \) \(\ds 2 \map \psi {\frac 1 6}\) \(=\) \(\ds -5 \gamma - 6 \ln 6 - \pi \map \cot {\frac \pi 6} - \map \psi {\frac 1 3} - \map \psi {\frac 1 2} - \map \psi {\frac 2 3}\) rearranging
\(\ds \) \(=\) \(\ds -5 \gamma - 6 \ln 2 - 6 \ln 3 - \pi \times \sqrt 3\) Sum of Logarithms, Cotangent of $30 \degrees$,
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \paren {-\gamma - \dfrac 3 2 \ln 3 - \dfrac \pi {2 \sqrt 3} }\) Digamma Function of One Third,
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \paren {-\gamma - 2 \ln 2}\) Digamma Function of One Half,
\(\ds \) \(\) \(\, \ds - \, \) \(\ds \paren {-\gamma - \dfrac 3 2 \ln 3 + \dfrac \pi {2 \sqrt 3} }\) and Digamma Function of Two Thirds
\(\ds \) \(=\) \(\ds -2 \gamma - 4 \ln 2 - 3 \ln 3 - \pi \sqrt 3\) simplifying
\(\ds \leadsto \ \ \) \(\ds \map \psi {\frac 1 6}\) \(=\) \(\ds -\gamma - 2 \ln 2 - \dfrac 3 2 \ln 3 - \dfrac {\pi \sqrt 3} 2\) dividing by $2$

$\blacksquare$