Direct Sum of Modules is Module

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be a commutative ring with unity.

Let $\left\{ {M_i}\right\}_{i \in I}$ be a family of $A$-modules indexed by $I$.

Let $\displaystyle M = \bigoplus_{i \mathop \in I} M_i$ be their direct sum.


Then $M$ is a module.


Proof


Also see