Dirichlet Integral/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \int_0^\infty \frac {\sin x} x \rd x = \frac \pi 2$


Proof

From Integral to Infinity of Function over Argument:

$\ds \int_0^\infty {\dfrac {\map f x} x} = \int_0^{\to \infty} \map F u \rd u$

for a real function $f$ and its Laplace transform $\laptrans f = F$, provided they exist.

Let $\map f x := \sin x$.

Then from Laplace Transform of Sine:

$\laptrans {\map f x} = \dfrac 1 {s^2 + 1}$


Hence:

\(\ds \int_0^\infty \frac {\sin x} x \rd x\) \(=\) \(\ds \int_0^{\to \infty} \dfrac {\d u} {u^2 + 1}\)
\(\ds \) \(=\) \(\ds \bigintlimits {\arctan u} 0 \infty\) Primitive of $\dfrac 1 {x^2 + a^2}$
\(\ds \) \(=\) \(\ds \dfrac \pi 2\)

$\blacksquare$


Sources