Dirichlet Integral/Proof 4
Jump to navigation
Jump to search
Theorem
- $\ds \int_0^\infty \frac {\sin x} x \rd x = \frac \pi 2$
Proof
From Integral to Infinity of Function over Argument:
- $\ds \int_0^\infty {\dfrac {\map f x} x} = \int_0^{\to \infty} \map F u \rd u$
for a real function $f$ and its Laplace transform $\laptrans f = F$, provided they exist.
Let $\map f x := \sin x$.
Then from Laplace Transform of Sine:
- $\laptrans {\map f x} = \dfrac 1 {s^2 + 1}$
Hence:
\(\ds \int_0^\infty \frac {\sin x} x \rd x\) | \(=\) | \(\ds \int_0^{\to \infty} \dfrac {\d u} {u^2 + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \bigintlimits {\arctan u} 0 \infty\) | Primitive of $\dfrac 1 {x^2 + a^2}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac \pi 2\) |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Solved Problems: Division by $t$: $22 \ \text{(b)}$