Laplace Transform of Periodic Function/Proof 3
Jump to navigation
Jump to search
Theorem
Let $f$ be periodic, that is:
- $\exists T \in \R_{\ne 0}: \forall x \in \R: \map f x = \map f {x + T}$
Then:
- $\laptrans {\map f t} = \dfrac 1 {1 - e^{-s T} } \ds \int_0^T e^{-s t} \map f t \rd t$
where $\laptrans {\map f t}$ denotes the Laplace transform.
Proof
\(\ds \laptrans {\map f t}\) | \(=\) | \(\ds \int_0^{\infty} e^{-s t} \map f t \rd t\) | Definition of Laplace Transform | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s t} \map f t \rd t + \int_T^{2 T} e^{-s t} \map f t \rd t + \int_{2 T}^{3 T} e^{-s t} \map f t \rd t + \dotsb\) | Sum of Integrals on Adjacent Intervals for Integrable Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s u} \map f u \rd t + \int_T^{2 T} e^{-s \paren {u + T} } \map f {u + T} \rd u + \int_{2 T}^{3 T} e^{-s \paren {u + 2 T} } \map f {u + 2 T} \rd u + \dotsb\) | Integration by Substitution: $t = u$, $t = u + T$, $t = u + 2 T$, $\ldots$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \int_0^T e^{-s u} \map f u \rd t + e^{-s T} \int_0^T e^{-s u} \map f u \rd u + e^{-2 s T} \int_0^T e^{-s u} \map f u \rd u + \dotsb\) | Second Translation Property of Laplace Transforms, and adjusting limits of integration | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {1 + e^{-s T} + e^{-2 s T} + \dotsb} \int_0^T e^{-s u} \map f u \rd u\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 {1 - e^{-s T} } \int_0^T e^{-s t} \map f t \rd t\) | Sum of Infinite Geometric Sequence |
$\blacksquare$
Sources
- 1965: Murray R. Spiegel: Theory and Problems of Laplace Transforms ... (previous) ... (next): Chapter $1$: The Laplace Transform: Solved Problems: Periodic Functions: $23$