Double Angle Formulas/Hyperbolic Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

$\sinh 2 x = 2 \sinh x \cosh x$

where $\sinh$ and $\cosh$ denote hyperbolic sine and hyperbolic cosine respectively.


Corollary

$\map \sinh {2 \theta} = \dfrac {2 \tanh \theta} {1 - \tanh^2 \theta}$


Proof 1

\(\ds \sinh 2 x\) \(=\) \(\ds \map \sinh {x + x}\)
\(\ds \) \(=\) \(\ds \sinh x \cosh x + \cosh x \sinh x\) Hyperbolic Sine of Sum
\(\ds \) \(=\) \(\ds 2 \sinh x \cosh x\)

$\blacksquare$


Proof 2

\(\ds \sinh 2 x\) \(=\) \(\ds \frac 1 2 \paren {e^{2 x} - e^{-2 x} }\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {e^x + e^{-x} } \paren {e^x - e^{-x} }\) Difference of Two Squares
\(\ds \) \(=\) \(\ds 2 \paren {\frac{e^x + e^{-x} } 2 \cdot \frac {e^x - e^{-x} } 2}\)
\(\ds \) \(=\) \(\ds 2 \sinh x \cosh x\) Definition of Hyperbolic Sine, Definition of Hyperbolic Cosine

$\blacksquare$


Proof 3

\(\ds \sinh 2 x\) \(=\) \(\ds -i \sin 2 i x\) Hyperbolic Sine in terms of Sine
\(\ds \) \(=\) \(\ds -2 i \sin i x \cos i x\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds 2 \sinh x \cosh x\) Hyperbolic Sine in terms of Sine, Hyperbolic Cosine in terms of Cosine

$\blacksquare$


Sources