Double Angle Formulas/Tangent

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \tan {2 \theta} = \dfrac {2 \tan \theta} {1 - \tan^2 \theta}$

where $\tan$ denotes tangent.


Proof 1

\(\displaystyle \map \tan {2 \theta}\) \(=\) \(\displaystyle \frac {\map \sin {2 \theta} } {\map \cos {2 \theta} }\) Tangent is Sine divided by Cosine
\(\displaystyle \) \(=\) \(\displaystyle \frac {2 \cos \theta \sin \theta} {\cos^2 \theta - \sin^2 \theta}\) Double Angle Formula for Sine and Double Angle Formula for Cosine
\(\displaystyle \) \(=\) \(\displaystyle \frac {\frac {2 \cos \theta \sin \theta} {\cos^2 \theta} } {\frac {\cos^2 \theta - \sin^2 \theta} {\cos^2 \theta} }\) dividing top and bottom by $\cos^2 \theta$
\(\displaystyle \) \(=\) \(\displaystyle \frac {2 \tan \theta} {1 - \tan^2 \theta}\) Simplifying: Tangent is Sine divided by Cosine

$\blacksquare$


Proof 2

\(\displaystyle \map \tan {2 \theta}\) \(=\) \(\displaystyle \map \tan {\theta + \theta}\)
\(\displaystyle \) \(=\) \(\displaystyle \frac {\tan \theta + \tan \theta} {1 - \tan \theta \tan \theta}\) Tangent of Sum
\(\displaystyle \) \(=\) \(\displaystyle \frac {2 \tan \theta} {1 - \tan^2 \theta}\)

$\blacksquare$


Proof 3

\(\displaystyle \frac {2 \tan \theta} {1 - \tan^2 \theta}\) \(=\) \(\displaystyle \displaystyle \dfrac {2 i \dfrac {1 - e^{2 i \theta} } {1 + e^{2 i \theta} } } {1 - \paren {i \dfrac {1 - e^{2 i \theta} } {1 + e^{2 i \theta} } }^2}\) Tangent Exponential Formulation
\(\displaystyle \) \(=\) \(\displaystyle \dfrac {2 i \paren {1 - e^{2 i \theta} } \paren {1 + e^{2 i \theta} } } {\paren {1 + e^{2 i \theta} }^2 + \paren {1 - e^{2 i \theta} }^2}\) multiplying both numerator and denominator by $\left({1 + e^{2 i \theta} }\right)^2$; $i$ is the imaginary unit
\(\displaystyle \) \(=\) \(\displaystyle \dfrac {2 i \paren {1 - e^{4 i \theta} } } {1 + 2 e^{2 i \theta} + e^{4 i \theta} + 1 - 2 e^{2 i \theta} + e^{4 i \theta} }\) Difference of Two Squares, Square of Sum, Square of Difference
\(\displaystyle \) \(=\) \(\displaystyle \dfrac {2 i \paren {1 - e^{4 i \theta} } } {2 + 2 e^{4 i \theta} }\) simplifying
\(\displaystyle \) \(=\) \(\displaystyle i \dfrac {1 - e^{4 i \theta} } {1 + e^{4 i \theta} }\) simplifying
\(\displaystyle \) \(=\) \(\displaystyle \map \tan {2 \theta}\) Tangent Exponential Formulation

$\blacksquare$


Sources