Tangent of Difference
Jump to navigation
Jump to search
Corollary to Tangent of Sum
- $\map \tan {a - b} = \dfrac {\tan a - \tan b} {1 + \tan a \tan b}$
where $\tan$ is tangent.
Proof
\(\ds \map \tan {a - b}\) | \(=\) | \(\ds \frac {\tan a + \map \tan {-b} } {1 - \tan a \, \map \tan {-b} }\) | Tangent of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\tan a - \tan b} {1 + \tan a \tan b}\) | Tangent Function is Odd |
$\blacksquare$
Sources
- 1953: L. Harwood Clarke: A Note Book in Pure Mathematics ... (previous) ... (next): $\text V$. Trigonometry: Formulae $(18)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 5$: Trigonometric Functions: $5.36$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): compound angle formulae (in trigonometry)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): Appendix $12$: Trigonometric formulae: Addition formulae
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): Appendix $14$: Trigonometric formulae: Addition formulae