Equal Numbers are Congruent
Jump to navigation
Jump to search
Theorem
- $\forall x, y, z \in \R: x = y \implies x \equiv y \pmod z$
where $x \equiv y \pmod z$ denotes congruence modulo $z$.
Proof
\(\ds x\) | \(=\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x - y\) | \(=\) | \(\ds 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x - y\) | \(=\) | \(\ds 0 \cdot z\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(\equiv\) | \(\ds y\) | \(\ds \pmod z\) | Definition of Congruence Modulo $z$ |
$\blacksquare$
Also see
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {4-1}$ Basic Properties of Congruences: Example $\text {4-3}$