Equal Set Differences iff Equal Intersections/Proof 2
Jump to navigation
Jump to search
Theorem
- $R \setminus S = R \setminus T \iff R \cap S = R \cap T$
Proof
From Set Difference and Intersection form Partition:
- $\paren {R \setminus S} \cup \paren {R \cap S} = R = \paren {R \setminus T} \cup \paren {R \cap T}$
- $\paren {R \cap S} \cap \paren {R \setminus S} = \O = \paren {R \cap T} \cap \paren {R \setminus T}$
whatever $R, S, T$ might be.
Let $R \setminus S = R \setminus T$.
Then:
\(\ds \paren {\paren {R \setminus S} \cup \paren {R \cap S} } \setminus \paren {R \setminus S}\) | \(=\) | \(\ds \paren {\paren {R \setminus T} \cup \paren {R \cap T} } \setminus \paren {R \setminus T}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {R \cap S} \setminus \paren {R \setminus S}\) | \(=\) | \(\ds \paren {R \cap T} \setminus \paren {R \setminus T}\) | Set Difference with Union is Set Difference |
Now, we have from Set Difference with Disjoint Set:
- $S \cap T = \O \iff S \setminus T = S$
and so:
- $\paren {R \cap S} \setminus \paren {R \setminus S} = R \cap S$
and:
- $\paren {R \cap T} \setminus \paren {R \setminus T} = R \cap T$
So:
- $R \cap S = R \cap T$
We can use exactly the same reasoning if we assume $R \cap S = R \cap T$:
\(\ds \paren {\paren {R \setminus S} \cup \paren {R \cap S} } \setminus \paren {R \cap S}\) | \(=\) | \(\ds \paren {\paren {R \setminus T} \cup \paren {R \cap T} } \setminus \paren {R \cap T}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {R \setminus S} \setminus \paren {R \cap S}\) | \(=\) | \(\ds \paren {R \setminus T} \setminus \paren {R \cap T}\) | Set Difference with Union is Set Difference |
and then because of Set Difference with Disjoint Set as above:
- $\paren {R \setminus S} \setminus \paren {R \cap S} = R \setminus S$
and:
- $\paren {R \setminus T} \setminus \paren {R \cap T} = R \setminus T$
So:
- $R \setminus S = R \setminus T$
$\blacksquare$