Set Difference and Intersection form Partition
Jump to navigation
Jump to search
Theorem
Let $S$ and $T$ be sets such that:
- $S \setminus T \ne \O$
- $S \cap T \ne \O$
where $S \setminus T$ denotes set difference and $S \cap T$ denotes set intersection.
Then $S \setminus T$ and $S \cap T$ form a partition of $S$.
Corollary 1
Let $S$ and $T$ be sets such that:
- $S \setminus T \ne \O$
- $T \setminus S \ne \O$
- $S \cap T \ne \O$
Then $S \setminus T$, $T \setminus S$ and $S \cap T$ form a partition of $S \cup T$, the union of $S$ and $T$.
Corollary 2
Let $\O \subsetneqq T \subsetneqq S$.
Then:
- $\set {T, \relcomp S T}$
is a partition of $S$.
Proof
From Set Difference and Intersection are Disjoint:
- $S \setminus T$ and $S \cap T$ are disjoint.
Next from Set Difference Union Intersection:
- $S = \paren {S \setminus T} \cup \paren {S \cap T}$
Thus by definition $S \setminus T$ and $S \cap T$ form a partition of $S$.
$\blacksquare$