Equation of Straight Line in Plane/Two-Point Form/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $P_1 := \tuple {x_1, y_1}$ and $P_2 := \tuple {x_2, y_2}$ be points in a cartesian plane.

Let $\LL$ be the straight line passing through $P_1$ and $P_2$.


Then $\LL$ can be described by the equation:

$\dfrac {y - y_1} {x - x_1} = \dfrac {y_2 - y_1} {x_2 - x_1}$

or:

$\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$


Proof

Straight-line-2-points-form-Proof-4.png


Let $z_1 = x_1 + i y_1$ and $z_2 = x_2 + i y_2$ be the position vectors of the points $A$ and $B$ embedded in the complex plane.

Let $z = x + i y$ be the position vector of an arbitrary point $P$ on the straight line $AB$.

From the diagram:

\(\ds OA + AP\) \(=\) \(\ds OP\)
\(\ds \leadsto \ \ \) \(\ds z_1 + AP\) \(=\) \(\ds z\)
\(\ds \leadsto \ \ \) \(\ds AP\) \(=\) \(\ds z - z_1\)

and:

\(\ds OA + AB\) \(=\) \(\ds OB\)
\(\ds \leadsto \ \ \) \(\ds z_1 + AB\) \(=\) \(\ds z_2\)
\(\ds \leadsto \ \ \) \(\ds AB\) \(=\) \(\ds z_2 - z_1\)


Then:

\(\ds \exists t \in \R: \, \) \(\ds AP\) \(=\) \(\ds t AB\) as $A$, $P$ and $B$ are collinear
\(\ds \leadsto \ \ \) \(\ds z - z_1\) \(=\) \(\ds t \paren {z_2 - z_1}\)
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \paren {1 - t} z_1 + t z_2\)
\(\ds \leadsto \ \ \) \(\ds x - x_1\) \(=\) \(\ds t \paren {x_2 - x_1}\)
\(\ds y - y_1\) \(=\) \(\ds t \paren {y_2 - y_1}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {x - x_1} {x_2 - x_1}\) \(=\) \(\ds \dfrac {y - y_1} {y_2 - y_1}\)

$\blacksquare$


Sources