Equation of Straight Line in Plane/Two-Point Form
Theorem
Let $P_1 := \tuple {x_1, y_1}$ and $P_2 := \tuple {x_2, y_2}$ be points in a cartesian plane.
Let $\LL$ be the straight line passing through $P_1$ and $P_2$.
Then $\LL$ can be described by the equation:
- $\dfrac {y - y_1} {x - x_1} = \dfrac {y_2 - y_1} {x_2 - x_1}$
or:
- $\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$
This is known as the two-point form.
Parametric Form
Let $\LL$ be a straight line embedded in a cartesian plane, given in two-point form as:
- $\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$
Then $\LL$ can be expressed by the parametric equations:
- $\begin {cases} x = x_1 + t \paren {x_2 - x_1} \\ y = y_1 + t \paren {y_2 - y_1} \end {cases}$
Determinant Form
Let $\LL$ be a straight line embedded in a Cartesian plane, given in two-point form as:
- $\dfrac {x - x_1} {x_2 - x_1} = \dfrac {y - y_1} {y_2 - y_1}$
Then $\LL$ can be expressed in the form:
- $\begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end {vmatrix} = 0$
Proof 1
From the slope-intercept form of the equation of the straight line:
- $(1): \quad y = m x + c$
which is to be satisfied by both $\tuple {x_1, y_1}$ and $\tuple {x_2, y_2}$.
We express $m$ and $c$ in terms of $\paren {x_1, y_1}$ and $\paren {x_2, y_2}$:
\(\ds y_1\) | \(=\) | \(\ds m x_1 + c\) | ||||||||||||
\(\ds y_2\) | \(=\) | \(\ds m x_2 + c\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds c\) | \(=\) | \(\ds y_1 - m x_1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y_2\) | \(=\) | \(\ds m x_2 + y_1 - m x_1\) | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds m\) | \(=\) | \(\ds \dfrac {y_2 - y_1} {x_2 - x_1}\) |
\(\ds y_1\) | \(=\) | \(\ds m x_1 + c\) | ||||||||||||
\(\ds y_2\) | \(=\) | \(\ds m x_2 + c\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds m\) | \(=\) | \(\ds \dfrac {y_2 - c} {x_2}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y_1\) | \(=\) | \(\ds \dfrac {y_2 - c} {x_2} x_1 + c\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y_1 x_2\) | \(=\) | \(\ds x_1 y_2 + c \paren {x_2 - x_1}\) | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds c\) | \(=\) | \(\ds \dfrac {y_1 x_2 - x_1 y_2} {x_2 - x_1}\) |
Substituting for $m$ and $c$ in $(1)$:
\(\ds y\) | \(=\) | \(\ds m x + c\) | which is $(1)$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds \dfrac {y_2 - y_1} {x_2 - x_1} x + \dfrac {y_1 x_2 - x_1 y_2} {x_2 - x_1}\) | from $(2)$ and $(3)$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y \paren {x_2 - x_1} + x_1 y_2\) | \(=\) | \(\ds x \paren {y_2 - y_1} + y_1 x_2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds y \paren {x_2 - x_1} + x_1 y_2 - y_1 x_1\) | \(=\) | \(\ds x \paren {y_2 - y_1} + y_1 x_2 - x_1 y_1\) | adding $y_1 x_1 = x_1 y_1$ to both sides | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds y \paren {x_2 - x_1} - y_1 \paren {x_2 - x_1}\) | \(=\) | \(\ds x \paren {y_2 - y_1} - x_1 \paren {y_2 - y_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {y - y_1} \paren {x_2 - x_1}\) | \(=\) | \(\ds \paren {x - x_1} \paren {y_2 - y_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {y - y_1} {x - x_1}\) | \(=\) | \(\ds \dfrac {y_2 - y_1} {x_2 - x_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {x - x_1} {x_2 - x_1}\) | \(=\) | \(\ds \dfrac {y - y_1} {y_2 - y_1}\) |
$\blacksquare$
Proof 2
Let $\tuple {x, y}$ be an arbitrary point on the straight line through $\tuple {x_1, y_1}$ and $\tuple {x_2, y_2}$.
The area of the triangle formed by $\tuple {x, y}$, $\tuple {x_1, y_1}$ and $\tuple {x_2, y_2}$ is equal to $0$.
Hence from Area of Triangle in Determinant Form:
- $\AA = \dfrac 1 2 \size {\paren {\begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \end {vmatrix} } }$
Hence:
\(\ds 0\) | \(=\) | \(\ds \dfrac 1 2 \size {\paren {\begin {vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \end {vmatrix} } }\) | Area of Triangle in Determinant Form | |||||||||||
\(\ds \) | \(=\) | \(\ds x_1 y_2 - x_2 y_1 + x_2 y - x y_2 + x y_1 - x_1 y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x_2 \paren {y - y_1} - y_2 \paren {x - x_1}\) | \(=\) | \(\ds y x_1 - x y_1\) | |||||||||||
\(\ds \) | \(=\) | \(\ds x_1 \paren {y - y_1} - y_1 \paren {x - x_1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {x_2 - x_1} \paren {y - y_1}\) | \(=\) | \(\ds \paren {y_2 - y_1} \paren {x - x_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {x_2 - x_1} {x - x_1}\) | \(=\) | \(\ds \dfrac {y_2 - y_1} {y - y_1}\) |
$\blacksquare$
Proof 3
Let $P = \tuple {x, y}$ be an arbitrary point on the straight line through $P_1 = \tuple {x_1, y_1}$ and $P_2 = \tuple {x_2, y_2}$.
Construct the straight line $P_1 H K$ perpendicular to the $x$-axis.
We have that $\triangle P_1 H P_2$ and $\triangle P_1 K P$ are similar.
Hence:
\(\ds \dfrac {P_1 K} {P_1 H}\) | \(=\) | \(\ds \dfrac {K P} {H P_2}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {x - x_1} {x_2 - x_1}\) | \(=\) | \(\ds \dfrac {y - y_1} {y_2 - y_1}\) |
$\blacksquare$
Proof 4
Let $z_1 = x_1 + i y_1$ and $z_2 = x_2 + i y_2$ be the position vectors of the points $A$ and $B$ embedded in the complex plane.
Let $z = x + i y$ be the position vector of an arbitrary point $P$ on the straight line $AB$.
From the diagram:
\(\ds OA + AP\) | \(=\) | \(\ds OP\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds z_1 + AP\) | \(=\) | \(\ds z\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds AP\) | \(=\) | \(\ds z - z_1\) |
and:
\(\ds OA + AB\) | \(=\) | \(\ds OB\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds z_1 + AB\) | \(=\) | \(\ds z_2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds AB\) | \(=\) | \(\ds z_2 - z_1\) |
Then:
\(\ds \exists t \in \R: \, \) | \(\ds AP\) | \(=\) | \(\ds t AB\) | as $A$, $P$ and $B$ are collinear | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds z - z_1\) | \(=\) | \(\ds t \paren {z_2 - z_1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \paren {1 - t} z_1 + t z_2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x - x_1\) | \(=\) | \(\ds t \paren {x_2 - x_1}\) | |||||||||||
\(\ds y - y_1\) | \(=\) | \(\ds t \paren {y_2 - y_1}\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac {x - x_1} {x_2 - x_1}\) | \(=\) | \(\ds \dfrac {y - y_1} {y_2 - y_1}\) |
$\blacksquare$
Examples
$\tuple {1, 3}$ and $\tuple {-2, 4}$
Two-Point Form of Equation of Straight Line in Plane/Examples/(1, 3) and (-2, 4)
$\tuple {2, 1}$ and $\tuple {-6, 7}$
Let $\LL$ be the straight line passing through the points $\tuple {2, 1}$ and $\tuple {-6, 7}$.
Then $\LL$ has the equation:
- $\dfrac {x - 2} {-6 - 2} = \dfrac {y - 1} {7 - 1}$
which after rearranging, can be written in the general form:
- $4 y = -3 x + 10$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 10$: Formulas from Plane Analytic Geometry: Equation of Line joining Two Points $\map {P_1} {x_1, y_1}$ and $\map {P_2} {x_2, y_2}$: $10.3$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): line: 2.
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): two-point form
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): line: 2.
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): two-point form
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 8$: Formulas from Plane Analytic Geometry: Equation of Line joining Two Points $\map {P_1} {x_1, y_1}$ and $\map {P_2} {x_2, y_2}$: $8.3.$
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): line (in two dimensions) Two-point form
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): straight line (in the plane)