Equation of Witch of Agnesi/Parametric Form
Jump to navigation
Jump to search
Theorem
The equation of the Witch of Agnesi can be presented in parametric form as:
- $\begin {cases} x = 2 a \cot \theta \\ y = a \paren {1 - \cos 2 \theta} \end {cases}$
Proof
Let $P = \tuple {x, y}$ and $A = \tuple {d, y}$.
Let $\theta$ be the angle that $ON$ makes with the horizontal.
We have by definition of cotangent:
- $\dfrac {OM} {MN} = \dfrac {2 a} x = \cot \theta$
By Thales' Theorem $\angle OAM$ is a right angle.
Hence $\angle OMA = \theta$ and so:
- $OA = 2 a \cos \theta$
Thus:
- $2 a - y = 2 a \cos^2 \theta$
\(\ds 2 a - y\) | \(=\) | \(\ds 2 a \cos^2 \theta\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds y\) | \(=\) | \(\ds 2 a \paren {1 - \dfrac {\cos 2 \theta + 1} 2}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {2 - \paren {\cos 2 \theta + 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a \paren {1 - \cos 2 \theta}\) |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 11$: Special Plane Curves: Witch of Agnesi: $11.23$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 9$: Special Plane Curves: Witch of Agnesi: $9.23.$