# Equivalence of Definitions of Bernoulli Numbers

Jump to navigation
Jump to search

## Theorem

The following definitions of the concept of **Bernoulli Numbers** are equivalent:

### Generating Function

- $\ds \frac x {e^x - 1} = \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!}$

### Recurrence Relation

- $B_n = \begin{cases} 1 & : n = 0 \\ \ds - \sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n + 1 - k} & : n > 0 \end{cases}$

or equivalently:

- $B_n = \begin{cases} 1 & : n = 0 \\ \ds - \frac 1 {n + 1} \sum_{k \mathop = 0}^{n - 1} \binom {n + 1} k B_k & : n > 0 \end{cases}$

## Proof

This page has been identified as a candidate for refactoring.Move Sum of Bernoulli Numbers by Binomial Coefficients Vanishes proof here - more thorough - currently duplicativeUntil this has been finished, please leave
`{{Refactor}}` in the code.
Because of the underlying complexity of the work needed, it is recommended that you do not embark on a refactoring task until you have become familiar with the structural nature of pages of $\mathsf{Pr} \infty \mathsf{fWiki}$.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Refactor}}` from the code. |

From the generating function definition:

\(\ds \frac x {e^x - 1}\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!}\) | ||||||||||||

\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!} \paren {\sum_{k \mathop = 0}^\infty \frac {x^k} {k!} - 1}\) | Definition of Real Exponential Function | ||||||||||

\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!} \sum_{k \mathop = 0}^\infty \frac {x^{k + 1} } {\paren {k + 1}!}\) | $1 = \dfrac {x^0} {0!}$ | |||||||||||

\(\ds \leadsto \ \ \) | \(\ds 1\) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {B_n x^n} {n!} \sum_{k \mathop = 0}^\infty \frac {x^k} {\paren {k + 1}!}\) | |||||||||||

\(\ds \) | \(=\) | \(\ds \sum_{n \mathop = 0}^\infty \frac {x^n} {n!} \sum_{k \mathop = 0}^n \binom n k \frac {B_k} {n - k + 1}\) | Cauchy Product, Product of Absolutely Convergent Series |

Equating coefficients:

For $n = 0$:

\(\ds 1\) | \(=\) | \(\ds \sum_{k \mathop = 0}^0 \binom 0 k \frac {B_k} {0 - k + 1}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \binom 0 0 \frac {B_0} {0 - 0 + 1}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds B_0\) | Binomial Coefficient with Zero |

For $n > 0$:

\(\ds 0\) | \(=\) | \(\ds \frac 1 {n!} \sum_{k \mathop = 0}^n \binom n k \frac {B_k} {n - k + 1}\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \frac 1 {n!} \paren {\sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n - k + 1} + \binom n n \frac {B_n} {n - n + 1} }\) | ||||||||||||

\(\ds \) | \(=\) | \(\ds \sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n - k + 1} + B_n\) | Binomial Coefficient with Self and simplifying | |||||||||||

\(\ds \leadsto \ \ \) | \(\ds B_n\) | \(=\) | \(\ds -\sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n - k + 1}\) |

Hence the result:

- $B_n = \begin{cases} 1 & : n = 0 \\ \ds - \sum_{k \mathop = 0}^{n-1} \binom n k \frac {B_k} {n - k + 1} & : n > 0 \end{cases}$

$\blacksquare$