# Definition:Bernoulli Numbers/Recurrence Relation

Jump to navigation
Jump to search

## Definition

The **Bernoulli numbers** $B_n$ are a sequence of rational numbers defined by the recurrence relation:

- $B_n = \begin{cases} 1 & : n = 0 \\ \displaystyle - \sum_{k \mathop = 0}^{n - 1} \binom n k \frac {B_k} {n + 1 - k} & : n > 0 \end{cases}$

or equivalently:

- $B_n = \begin{cases} 1 & : n = 0 \\ \displaystyle - \frac 1 {n+1} \sum_{k \mathop = 0}^{n - 1} \binom {n+1} k B_k & : n > 0 \end{cases}$

## Illustration

For $n \in \N_{>0}$:

- $\displaystyle \sum_{k \mathop = 0}^n \binom {n + 1} k B_k = 0$

## Also see

- Results about
**the Bernoulli Numbers**can be found here.