Equivalence of Definitions of Complex Inverse Hyperbolic Sine
Theorem
The following definitions of the concept of Complex Inverse Hyperbolic Sine are equivalent:
Definition 1
The inverse hyperbolic sine is a multifunction defined as:
- $\forall z \in \C: \map {\sinh^{-1} } z := \set {w \in \C: z = \map \sinh w}$
where $\map \sinh w$ is the hyperbolic sine function.
Definition 2
The inverse hyperbolic sine is a multifunction defined as:
- $\forall z \in \C: \map {\sinh^{-1} } z := \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i: k \in \Z}$
where:
- $\sqrt {\size {z^2 + 1} }$ denotes the positive square root of the complex modulus of $z^2 + 1$
- $\map \arg {z^2 + 1}$ denotes the argument of $z^2 + 1$
- $\ln$ denotes the complex natural logarithm considered as a multifunction.
Proof
The proof strategy is to how that for all $z \in \C$:
- $\set {w \in \C: z = \map \sinh w} = \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
Thus let $z \in \C$.
Definition 1 implies Definition 2
It is demonstrated that:
- $\set {w \in \C: z = \map \sinh w} \subseteq \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
Let $w \in \set {w \in \C: z = \map \sinh w}$.
Then by definition of the hyperbolic sine function:
- $(1): \quad z = \dfrac {e^w - e^{-w} } 2$
Let $v = e^w$.
Then:
\(\ds 2 z\) | \(=\) | \(\ds v - \frac 1 v\) | multiplying $(1)$ by $2$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds v^2 - 2 z v - 1\) | \(=\) | \(\ds 0\) | multiplying by $v$ and rearranging | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds v\) | \(=\) | \(\ds z + \paren {1 + z^2}^{1/2}\) | Quadratic Formula |
Let $s = z^2 + 1$.
Then:
\(\ds v\) | \(=\) | \(\ds z + s^{1/2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds z + \sqrt {\size s} \paren {\map \cos {\frac {\map \arg s} 2} + i \map \sin {\frac {\map \arg s} 2} }\) | Definition of Complex Square Root | |||||||||||
\(\text {(2)}: \quad\) | \(\ds \leadsto \ \ \) | \(\ds \ln v\) | \(=\) | \(\ds \map \ln {z + \sqrt {\size s} \paren {\map \cos {\frac {\map \arg s} 2} + i \map \sin {\frac {\map \arg s} 2} } }\) | where $\ln$ denotes the Complex Natural Logarithm |
We have that:
\(\ds v\) | \(=\) | \(\ds e^w\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \ln v\) | \(=\) | \(\ds \map \ln {e^w}\) | |||||||||||
\(\text {(3)}: \quad\) | \(\ds \) | \(=\) | \(\ds w + 2 k' \pi i: k' \in \Z\) | Definition of Complex Natural Logarithm |
Thus from $(2)$ and $(3)$:
\(\ds w + 2 k' \pi i\) | \(=\) | \(\ds \map \ln {z + \sqrt {\size s} \paren {\map \cos {\frac {\map \arg s} 2} + i \map \sin {\frac {\map \arg s} 2} } }\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(=\) | \(\ds \map \ln {z + \sqrt {\size s} \paren {\map \cos {\frac {\map \arg s} 2} + i \map \sin {\frac {\map \arg s} 2} } } + 2 k \pi i\) | putting $k = -k'$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(=\) | \(\ds \map \ln {z + \sqrt {\size {z^2 + 1} } e^{\frac i 2 \map \arg {z^2 + 1} } } + 2 k \pi i\) | Definition of Exponential Form of Complex Number |
Thus by definition of subset:
- $\set {w \in \C: z = \map \sinh w} \subseteq \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
$\Box$
Definition 2 implies Definition 1
It is demonstrated that:
- $\set {w \in \C: z = \map \sinh w} \supseteq \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
Let $w \in \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$.
Then:
\(\ds \exists k \in \Z:: \, \) | \(\ds w + 2 \paren {-k} \pi i\) | \(=\) | \(\ds \map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{w + 2 \paren {-k} \pi i}\) | \(=\) | \(\ds z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} }\) | Definition of Complex Natural Logarithm | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^w\) | \(=\) | \(\ds z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} }\) | Complex Exponential Function has Imaginary Period | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^w - z\) | \(=\) | \(\ds \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} }\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {e^w - z}^2\) | \(=\) | \(\ds \size {z^2 + 1} e^{i \map \arg {z^2 + 1} }\) | Roots of Complex Number | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {e^w - z}^2\) | \(=\) | \(\ds z^2 + 1\) | Definition of Exponential Form of Complex Number | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{2w} - 2 z e^w + z^2\) | \(=\) | \(\ds z^2 + 1\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^{2w}\) | \(=\) | \(\ds 1 + 2 z e^w\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e^w - \frac 1 {e^w}\) | \(=\) | \(\ds 2 z\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \frac {e^w - e^{-w} } 2\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds z\) | \(=\) | \(\ds \sinh w\) | Definition of Hyperbolic Sine | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds w\) | \(\in\) | \(\ds \set {w \in \C: z = \map \sinh w}\) |
Thus by definition of superset:
- $\set {w \in \C: z = \map \sinh w} \supseteq \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
$\Box$
Thus by definition of set equality:
- $\set {w \in \C: z = \map \sinh w} = \set {\map \ln {z + \sqrt {\size {z^2 + 1} } e^{\paren {i / 2} \map \arg {z^2 + 1} } } + 2 k \pi i}$
$\blacksquare$
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |